【題目】已知函數(shù)f(x)=lnx,則函數(shù)g(x)=f(x)﹣f′(x)的零點(diǎn)所在的區(qū)間是( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)

【答案】B
【解析】解:由f(x)=lnx,則

則g(x)=f(x)﹣f′(x)=lnx﹣

函數(shù)g(x)的定義域?yàn)椋?,+∞),

>0在x∈(0,+∞)上恒成立,

所以函數(shù)g(x)在(0,+∞)上為增函數(shù),

而g(1)=ln1﹣1=﹣1<0,g(2)=ln2﹣ =ln2﹣ln >0.

所以函數(shù)g(x)在區(qū)間(1,2)上有唯一零點(diǎn).

所以答案是:B.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解基本求導(dǎo)法則(若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二元一次不等式組 所表示的平面區(qū)域?yàn)镸,若M與圓(x﹣4)2+(y﹣1)2=a(a>0)至少有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料.已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示.如果生產(chǎn)一噸甲、乙產(chǎn)品可獲得利潤(rùn)分別為3萬(wàn)元、4萬(wàn)元,則該企業(yè)每天可獲得最大利潤(rùn)為(

原料限額

A(噸)

3

2

12

B(噸)

1

2

8


A.12萬(wàn)元
B.16萬(wàn)元
C.17萬(wàn)元
D.18萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 對(duì)任意的n∈N* , 點(diǎn)(n,Sn)恒在函數(shù)y= x的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記Tn= ,若對(duì)于一切的正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)Kn為數(shù)列{bn}的前n項(xiàng)和,其中bn=2an , 問(wèn)是否存在正整數(shù)n,t,使 成立?若存在,求出正整數(shù)n,t;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)= (x∈R,且x≠﹣1),g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f(g(2)),g(f(2))的值;
(3)求f(g(x)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知R是實(shí)數(shù)集,M={x| <1},N={y|y= +1},N∩RM=( )
A.(1,2)
B.[0,2]
C.
D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)為定義在R上的偶函數(shù),當(dāng)x≤﹣1時(shí),f(x)=x+b,且f(x)的圖象經(jīng)過(guò)點(diǎn)(﹣2,0),在y=f(x)的圖象中有一部分是頂點(diǎn)為(0,2),過(guò)點(diǎn)(﹣1,1)的一段拋物線.
(1)試求出f(x)的表達(dá)式;
(2)求出f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)镈,若滿(mǎn)足①f(x)在D內(nèi)是單調(diào)函數(shù),②存在[a,b]D,使f(x)在[a,b]上的值域?yàn)閇a,b],那么y=f(x)叫做閉函數(shù),現(xiàn)有f(x)= +k是閉函數(shù),那么k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)a>0,集合 ,集合B={x||2x﹣1|>5}.
(1)求集合A、B;
(2)若A∩B≠,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案