年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011屆湖北省黃岡中學(xué)高三5月模擬考試文科數(shù)學(xué) 題型:解答題
(本小題滿分14分)
給定橢圓,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到距離為.
(Ⅰ)求橢圓C及其“伴隨圓”的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓C只有一個(gè)公共點(diǎn),且截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,求的值;
(Ⅲ)過橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線,使得與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線的斜率之積是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆湖北省黃岡中學(xué)高三5月模擬考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分13分)
給定橢圓,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到距離為.
(Ⅰ)求橢圓及其“伴隨圓”的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓C只有一個(gè)公共點(diǎn),且截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,求的值;
(Ⅲ)過橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線,使得與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線的斜率之積是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市徐匯區(qū)高三上學(xué)期期末考試(一模)理科數(shù)學(xué)試卷(解析版) 題型:解答題
給定橢圓,稱圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是.
(1)若橢圓C上一動(dòng)點(diǎn)滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長(zhǎng)為,求P點(diǎn)的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過兩點(diǎn)的直線的最短距離.若存在,求出a,b的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市徐匯區(qū)高三上學(xué)期期末考試(一模)文科數(shù)學(xué)試卷(解析版) 題型:解答題
給定橢圓,稱圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是.
(1)若橢圓C上一動(dòng)點(diǎn)滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長(zhǎng)為,求P點(diǎn)的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過兩點(diǎn)的直線的最短距離.若存在,求出a,b的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省高三5月模擬考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分13分)
給定橢圓,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到距離為.
(Ⅰ)求橢圓及其“伴隨圓”的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓C只有一個(gè)公共點(diǎn),且截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,求的值;
(Ⅲ)過橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線,使得與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線的斜率之積是否為定值,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com