A. | 1 | B. | ln2 | C. | 2ln2 | D. | 2 |
分析 設(shè)切點(diǎn)為(m,n),求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,運(yùn)用切點(diǎn)的特點(diǎn),代入切線的方程和曲線方程,解得a=2,再由定積分的運(yùn)算公式,即可得到所求值.
解答 解:設(shè)切點(diǎn)為(m,n),
y=f(x)=ln(x+a)的導(dǎo)數(shù)為f′(x)=$\frac{1}{x+a}$,
可得切線的斜率為k=$\frac{1}{a+m}$=1,
又n=1+m=ln(a+m),可得a=2,m=-1,n=0,
可得f(x)=ln(x+2),
f′(x)=$\frac{1}{x+2}$,即有${∫}_{1}^{2}$f′(x-2)dx=${∫}_{1}^{2}$$\frac{1}{x}$dx
=lnx|${\;}_{1}^{2}$=ln2-ln1=ln2.
故選:B.
點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查定積分的運(yùn)算,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1≤x$<\frac{1}{3}$} | B. | {x|-$\frac{1}{3}<x<2$} | C. | {x|-1$≤x≤\frac{1}{3}$} | D. | {x|-$\frac{1}{3}≤x≤2$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{5}{12}$,$\frac{11}{6}$] | B. | (-∞,$\frac{5}{12}$]∪[$\frac{11}{6}$,+∞) | C. | [$\frac{20}{3}$,$\frac{37}{3}$] | D. | (-∞,$\frac{20}{3}$]∪[$\frac{37}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-2\sqrt{7}$ | B. | $\sqrt{7}$ | C. | $±2\sqrt{7}$ | D. | $±\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ω=1 | B. | 曲線y=f(x)關(guān)于點(diǎn)(π,0)對稱 | ||
C. | 曲線y=f(x)與直線$x=\frac{π}{2}$對稱 | D. | 函數(shù)f(x)在區(qū)間$(0,\frac{π}{3})$單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{16}$=1 | C. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{9}$=1 | D. | $\frac{{y}^{2}}{25}$-$\frac{{x}^{2}}{9}$=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com