1.設集合A={x|x≥-1},B={x|y=$\sqrt{3{x}^{2}+5x-2}$},則A∩∁RB等于( 。
A.{x|-1≤x$<\frac{1}{3}$}B.{x|-$\frac{1}{3}<x<2$}C.{x|-1$≤x≤\frac{1}{3}$}D.{x|-$\frac{1}{3}≤x≤2$}

分析 根據(jù)題意,求出集合B以及B在R中的補集,再求A∩∁RB即可.

解答 解:∵集合A={x|x≥-1},
B={x|y=$\sqrt{3{x}^{2}+5x-2}$}={x|3x2+5x-2≥0}={x|x≤-2,或x≥$\frac{1}{3}$},
∴∁RB={x|-2<x<$\frac{1}{3}$},
∴A∩∁RB={x|-1≤x<$\frac{1}{3}$}.
故選:A.

點評 本題考查了集合的定義與運算問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.設f(n)=(1+$\frac{1}{n}$)(1+$\frac{1}{n+1}$)…(1+$\frac{1}{n+n}$)用數(shù)學歸納法證明f(n)≥3,在假設n=k時成立后,f(k+1)與f(k)的關系是f(k+1)=f(k)•$\frac{(1+\frac{1}{2k+1})(1+\frac{1}{2k+2})}{1+\frac{1}{k}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知實數(shù)x,y滿足$\left\{{\begin{array}{l}{2x+y≥4}\\{x-y≥-1}\\{x-2y≤2}\end{array}}\right.$,則z=x-y(  )
A.最小值為-1,不存在最大值B.最小值為2,不存在最大值
C.最大值為-1,不存在最小值D.最大值為2,不存在最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設a,b為實數(shù),若$\frac{1+2i}{a+bi}$=1+i,則|a+bi|=( 。
A.$\frac{5}{2}$B.2C.$\frac{\sqrt{10}}{4}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知4x2+3y2=12,求x-3y的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在△ABC中,角A、B、C所對的邊分別為a、b、c,若tanAtanC+tanBtanC=tanAtanB,且sin2A+sin2B=(m2+1)sin2C,則m的值為±2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.求由直線y=6-x與曲線y=2$\sqrt{2x}$及x軸所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知數(shù)列{an}的前n項和為Sn,且滿足a1=1,an=$\frac{3}{n+2}$Sn(n∈N),則Sn=$\frac{1}{6}n(n+1)(n+2)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知直線y=x+1與曲線y=f(x)=ln(x+a)相切,則${∫}_{1}^{2}$f′(x-2)dx=( 。
A.1B.ln2C.2ln2D.2

查看答案和解析>>

同步練習冊答案