分析 (1)根據(jù)題意設橢圓方程,由2a+2c=12及e=$\frac{c}{a}$=$\frac{1}{2}$,求得a和c的值,由b2=a2-c2=12,即可求得橢圓方程;
(2)由題意設直線方程,代入橢圓方程,由韋達定理求得y1+y2=$\frac{12m}{3{m}^{2}+4}$,y1•y2=-$\frac{36}{3{m}^{2}+4}$,根據(jù)|$\overrightarrow{MN}$|=2a+e(x1+x2),代入即求得m的值,求得直線方程,利用點到直線的距離公式及三角形的面積公式即可求得△MNF2的面積.
解答 解:(1)由題意可知:設橢圓方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$,(a>b>0),
由題意可知:2a+2c=12,即a+c=6,
由e=$\frac{c}{a}$=$\frac{1}{2}$,
解得:a=4,c=2,
由b2=a2-c2=12,
∴橢圓方程為:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$;
(2)設MN的方程為my=x+2,M(x1,y1),N(x2,y2),
$\left\{\begin{array}{l}{my=x+2}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\end{array}\right.$,整理得:(3m2+4)y2-12my-36=0,
由韋達定理可知:y1+y2=$\frac{12m}{3{m}^{2}+4}$,y1•y2=-$\frac{36}{3{m}^{2}+4}$,
|$\overrightarrow{MN}$|=2a+e(x1+x2)=2×4+$\frac{1}{2}$[m(y1+y2)-4]=$\frac{48}{7}$,整理得:m2=1,
直線方程:x±y+2=0,
則F2點到直線x±y+2=0的距離d=$\frac{丨2+2丨}{\sqrt{{1}^{2}+{1}^{2}}}$=2$\sqrt{2}$,
△MNF2的面積S=$\frac{1}{2}$•d•|$\overrightarrow{MN}$|=$\frac{1}{2}$•2$\sqrt{2}$•$\frac{48}{7}$=$\frac{48}{7}$$\sqrt{2}$.
△MNF2的面積為:$\frac{48}{7}$$\sqrt{2}$.
點評 本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查弦長公式,韋達定理及點到直線的距離公式,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | 2 | C. | 4 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{a-b}$+$\frac{1}{b-c}$>$\frac{4}{a-c}$ | B. | $\frac{1}{a-b}$+$\frac{1}{b-c}$<$\frac{4}{a-c}$ | C. | $\frac{1}{a-b}$+$\frac{1}{b-c}$≥$\frac{4}{a-c}$ | D. | $\frac{1}{a-b}$+$\frac{1}{b-c}$≤$\frac{4}{a-c}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{13}$ | B. | $\sqrt{41}$ | C. | $\sqrt{15}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com