17.$\int_1^2{({e^x}-\frac{2}{x})}dx$=e2-e-2ln2.

分析 根據(jù)定積分的計算法則計算即可.

解答 解:$\int_1^2{({e^x}-\frac{2}{x})}dx$=(ex-2lnx)|${\;}_{1}^{2}$=e2-2ln2-e+2ln1=e2-e-2ln2,
故答案為:e2-e-2ln2

點評 本題考查了定積分的計算,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.近年來我國電子商務(wù)行業(yè)迎來篷布發(fā)展的新機遇,2015年雙11期間,某購物平臺的銷售業(yè)績高達918億人民幣.與此同時,相關(guān)管理部門也推出了針對電商的商品和服務(wù)的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功的交易,并對其評價進行統(tǒng)計,對商品的好評率為$\frac{3}{5}$,對服務(wù)的好評率為$\frac{3}{4}$,其中對商品和服務(wù)都做出好評的交易為80次.
(1)是否可以在犯錯誤概率不超過0.1%的前提下,認為商品好評與服務(wù)好評有關(guān)?
(2)若針對商品的好評率,采用分層抽樣的方式從這200次交易中取出5次交易,并從中選擇兩次交易進行客戶回訪,求只有一次好評的概率.
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題正確的是( 。
A.若$\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$
B.兩個有共同起點且相等的向量,其終點可能不同
C.向量$\overrightarrow{AB}$的長度與向量$\overrightarrow{BA}$的長度相等
D.若非零向量$\overrightarrow{AB}$與$\overrightarrow{CD}$是共線向量,則A、B、C、D四點共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cos(ωx+$\frac{π}{3}$)+cos(ωx-$\frac{π}{3}$)-1(ω>0),x∈R,且函數(shù)的最小正周期為π:
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A、B、C所對的邊分別是a、b、c,若f(B)=0,$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{3}{2}$,且a+c=4,試求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{x}{a}$-lnx(a≠0,a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在兩個不相等的正數(shù)x1,x2,滿足f(x1)=f(x2),求證:x1+x2>2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),如對任意實數(shù)x,有f(x)>f′(x),且f(x)+1為奇函數(shù),則不等式f(x)+ex<0的解集是( 。
A.(-∞,0)B.(0,+∞)C.(-∞,$\frac{1}{e}$)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x2-4lnx
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=$\frac{f(x)}{2}$+3lnx-ax(a>0),證明:函數(shù)g(x)有且僅有1個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求與雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1共漸近線且焦點在圓x2+y2=100上的雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.sin75°的值等于( 。
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$

查看答案和解析>>

同步練習(xí)冊答案