8.下列命題正確的是( 。
A.若$\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$
B.兩個有共同起點且相等的向量,其終點可能不同
C.向量$\overrightarrow{AB}$的長度與向量$\overrightarrow{BA}$的長度相等
D.若非零向量$\overrightarrow{AB}$與$\overrightarrow{CD}$是共線向量,則A、B、C、D四點共線

分析 根據(jù)平面向量的基本概念,對選項中的命題進行分析與判斷即可.

解答 解:對于A,當$\overrightarrow$=$\overrightarrow{0}$時,有$\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow$∥$\overrightarrow{c}$,但$\overrightarrow{a}$∥$\overrightarrow{c}$不一定成立,∴A錯誤;
對于B,兩個有共同起點且相等的向量,其終點也相同,∴B錯誤;
對于C,向量$\overrightarrow{AB}$的長度與向量$\overrightarrow{BA}$的長度相等,方向相反,∴C正確;
對于D,非零向量$\overrightarrow{AB}$與$\overrightarrow{CD}$是共線向量,則A、B、C、D四點不一定共線,∴D錯誤.
故選:C.

點評 本題考查了平面向量的基本概念與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx+x2-ax(a為常數(shù)).
(Ⅰ)若x=1是函數(shù)f(x)的一個極值點,求a的值;
(Ⅱ)當0<a≤4時,討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)為定義在(0,+∞)上的單調(diào)遞增函數(shù),對任意x∈(0,+∞),都滿足f[f(x)-log2x]=3,則函數(shù)y=f(x)-f′(x)-2(f′(x)為f(x)的導(dǎo)函數(shù))的零點所在區(qū)間是( 。
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)g(x)=x2-6(x∈R),$f(x)=\left\{\begin{array}{l}g(x)+x+4,x<g(x)\\ g(x)-x,\;\;\;\;\;x≥g(x)\end{array}\right.$,則f(1)=-6,f(x)的值域是[-$\frac{25}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖是函數(shù)y=Asin(ωx+φ) (A>0,ω>0,-π<φ<π)的部分圖象,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,最小正周期為$\frac{π}{2}$又是偶函數(shù)的是( 。
A.y=cos2xB.y=tan4xC.y=sin4xD.y=cos4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-(3a+1)x+3alnx.
(Ⅰ)若曲線y=f(x)在點(4,f ( 4 ))處的切線的斜率小于0,求f(x)的單調(diào)區(qū)間;
(Ⅱ)對任意的a∈[1,3],x1,x2∈[1,3](x1≠x2),恒有$|f({x_1})-f({x_2})|<k|\frac{1}{x_1}-\frac{1}{x_2}|$,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.$\int_1^2{({e^x}-\frac{2}{x})}dx$=e2-e-2ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A,B,C的對邊分別為a,b,c,且b2+c2=a2+$\sqrt{3}$bc,acosB=bcosA
(1)求角A,B,C的大;
(2)若BC邊上的中線AM的長為$\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案