7.sin75°的值等于( 。
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$

分析 利用兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值即可化簡(jiǎn)求值得解.

解答 解:sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30°=$\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}$+$\frac{\sqrt{2}}{2}×\frac{1}{2}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$.
故選:A.

點(diǎn)評(píng) 本題主要考查了兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.$\int_1^2{({e^x}-\frac{2}{x})}dx$=e2-e-2ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b2+c2=a2+$\sqrt{3}$bc,acosB=bcosA
(1)求角A,B,C的大小;
(2)若BC邊上的中線AM的長(zhǎng)為$\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知m,n∈R,函數(shù)f(x)=(4x+m)lnx,g(x)=x2+nx-5,曲線y=f(x)與曲線y=g(x)在x=1處的切線相同.
(1)求f(x),g(x)的解析式:
(2)求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(3)證明:當(dāng)x∈(0,k](0<k≤1)時(shí),不等式(2x+1)f(x)-(2x+1)g(x)≤0恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.復(fù)數(shù)z=$\frac{1}{{i}^{3}}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為( 。
A.(0,1)B.(0,-1)C.(-1,0)D.(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列極限存在的是( 。
A.$\underset{lim}{n→∞}$(-1)n+1B.$\underset{lim}{n→∞}$2nC.$\underset{lim}{x→{0}^{+}}$lnxD.$\underset{lim}{x→∞}$$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|x+1|-2a,x≤0}\\{lo{g}_{3}x,x>0}\\{\;}\end{array}\right.$.
①當(dāng)a=0時(shí),若f(x)=0,則x=±1;
②若f(x)有三個(gè)不同零點(diǎn),則實(shí)數(shù)a的取值范圍為0<a≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}中,a1=2,an>0,且滿足2a2n+1-an2-1=0(n∈N),求an,用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn),E′,F(xiàn)′分別是AB,BC,A′B′,B′C′的中點(diǎn),求證:EE′∥FF′.

查看答案和解析>>

同步練習(xí)冊(cè)答案