【題目】如圖,將一副三角板拼接,使他們有公共邊BC,且使這兩個三角形所在的平面互相垂直,,,BC=6.

(1)證明:平面ADC平面ADB

(2)求二面角ACDB平面角的正切值.

【答案】(1)見解析(2)2

【解析】試題分析:(1)先根據(jù)面面垂直性質定理得,即得.再根據(jù)以及線面垂直判定定理得.最后根據(jù)面面垂直判定定理得結論,(2)取BC的中點,根據(jù)等腰三角形性質得再根據(jù)面面垂直性質定理得再作,則根據(jù)三垂線定理得,由二面角定義得是二面角的平面角.最后解直角三角形得二面角ACDB平面角的正切值.

試題解析:(1)證明:因為

所以.

,所以.

,且,

所以.

,所以.

(2)取BC的中點,連接,則,

所以

所以,連接,則所以是二面角的平面角.

中,,又,

所以,即二面角平面角的正切值為2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,直三棱柱中, , , ,點, 分別是的中點.

(Ⅰ)求證: 平面

(Ⅱ)若二面角的大小為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點處的切線與直線垂直,求函數(shù)的極值;

(2)設函數(shù).=時,若區(qū)間[1,e]上存在x0,使得,求實數(shù)的取值范圍.(為自然對數(shù)底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)求函數(shù)的零點個數(shù);

(2)證明:當,函數(shù)有最小值,設的最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.

(1)求的普通方程和的直角坐標方程;

(2)若過點的直線交于,兩點,與交于,兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的定義域為,若滿足條件:存在,使上的值域為,則稱為“倍縮函數(shù)”.若函數(shù)為“倍縮函數(shù)”,則實數(shù)的取值范圍是

A. (﹣∞,ln2﹣1) B. (﹣∞,ln2﹣1]

C. (1﹣ln2,+∞) D. [1﹣ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且經過點.

(1)求橢圓的標準方程;

(2)過點的直線交橢圓于兩點,軸上的點,若是以為斜邊的等腰直角三角形, 求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了檢驗學習情況,某培訓機構于近期舉辦一場競賽活動,分別從甲、乙兩班各抽取10名學員的成績進行統(tǒng)計分析,其成績的莖葉圖如圖所示(單位:分),假設成績不低于90分者命名為“優(yōu)秀學員”.

(1)分別求甲、乙兩班學員成績的平均分(結果保留一位小數(shù));

(2)從甲班4名優(yōu)秀學員中抽取兩人,從乙班2名80分以下的學員中抽取一人,求三人平均分不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列中,已知,. 

(Ⅰ),求數(shù)列的通項公式;

(Ⅱ),求數(shù)列的前項和.

查看答案和解析>>

同步練習冊答案