12.已知函數(shù)f(x)=x+$\frac{1}{x}$.
(Ⅰ)用定義證明f(x)在[1,+∞)上是增函數(shù);
(Ⅱ)已知f(x)在(0,1)上遞減,試求f(x)在[$\frac{1}{3}$,2]上的最大值與最小值.

分析 (Ⅰ)利用函數(shù)的單調(diào)性的定義,證明f(x)在[1,+∞)上是增函數(shù).
(Ⅱ)根據(jù)f(x)在[$\frac{1}{3}$,1]上單調(diào)遞減,在[1,3]上單調(diào)遞增,求得f(x)在[$\frac{1}{3}$,2]上的最大值與最小值.

解答 證明:(Ⅰ)對(duì)于函數(shù)f(x)=x+$\frac{1}{x}$,任取x2>x1≥1,
∴(x1-x2)<0,x1•x2>1,
∴f(x1)-f(x2)=(x1+$\frac{1}{{x}_{1}}$)-(x2+$\frac{1}{{x}_{2}}$)=(x1-x2)+($\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$)=$\frac{{(x}_{1}{-x}_{2})•{(x}_{1}{•x}_{2}-1)}{{x}_{1}{•x}_{2}}$<0,
即 f(x1)<f(x2),
∴f(x)在[1,+∞)上是增函數(shù).
解:(Ⅱ)依題知,f(x)在[$\frac{1}{3}$,1]上單調(diào)遞減,在[1,3]上單調(diào)遞增.
又f($\frac{1}{3}$)=$\frac{10}{3}$,f(1)=2,f(2)=$\frac{5}{2}$,
所以f(x)在[$\frac{1}{3}$,2]上的最大值為$\frac{10}{3}$,最小值為2.

點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性的定義,函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.a(chǎn),b是兩條異面直線,A是不在a,b上的點(diǎn),則下列結(jié)論成立的是(  )
A.過(guò)A且平行于a和b的平面可能不存在
B.過(guò)A有且只有一個(gè)平面平行于a和b
C.過(guò)A至少有一個(gè)平面平行于a和b
D.過(guò)A有無(wú)數(shù)個(gè)平面平行于a和b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.用行列式討論下列關(guān)于x,y,z的方程組$\left\{\begin{array}{l}ax-y-z=1\\ x+y-az=2\\ x-y-z=1\end{array}\right.$的解的情況,并求出相應(yīng)的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.點(diǎn)(1,-1)到直線3x-4y-2=0的距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x3-3x+4,求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知矩陣M=$[\begin{array}{l}{2}&{m}\\{n}&{1}\end{array}]$的兩個(gè)特征向量a1=$[\begin{array}{l}{1}\\{0}\end{array}]$,a2=$[\begin{array}{l}{0}\\{1}\end{array}]$,若β=$[\begin{array}{l}{1}\\{2}\end{array}]$,求M2β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=$\left\{\begin{array}{l}ln(-x)+a,x<0\\ f(x+1),x≥0\end{array}$,a∈R,當(dāng)0≤x<1時(shí),f(x)=1-x,則f(x)的零點(diǎn)個(gè)數(shù)為( 。
A.OB.1C.2D.無(wú)窮多個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.用數(shù)學(xué)歸納法證明$\frac{1}{n}$+$\frac{1}{n+1}$+$\frac{1}{n+2}$+…$\frac{1}{2n}$<1(n∈N*且n>1)由n=k到n=k+1時(shí),不等式左邊應(yīng)添加的項(xiàng)是( 。
A.$\frac{1}{2(k+1)}$B.$\frac{1}{2k+1}$+$\frac{1}{2k+2}$-$\frac{1}{k}$
C.$\frac{1}{2k+1}$+$\frac{1}{2k+2}$-$\frac{1}{k+1}$D.$\frac{1}{2k+1}$+$\frac{1}{2k+2}$-$\frac{1}{k+1}$-$\frac{1}{k+2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)函數(shù)f(x)=sin(2x+φ)+cos(2x+φ)(|φ|<$\frac{π}{2}$)為偶函數(shù),則φ=( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案