分析 (1)根據(jù)絕對(duì)值的幾何意義,可得當(dāng)且僅當(dāng)x∈[1,2]時(shí),|x-1|+|x-2|取最小值1;當(dāng)且僅當(dāng)x=2時(shí),|x-1|+|x-2|+|x-3|取最小值2;
(2)歸納可得:若n為奇數(shù),則當(dāng)x∈{${a}_{\frac{n+1}{2}}$}時(shí)S取到最小值;若n為偶數(shù),則當(dāng)x∈[${a}_{\frac{n}{2}}$,${a}_{\frac{n}{2}+1}$]時(shí),S取到最小值;
(3)根據(jù)(2)中結(jié)論,可得x=$\frac{1}{7}$時(shí),|x-1|+|2x-1|+|3x-1|+…+|10x-1|取最小值.
解答 解:(1)|x-1|+|x-2|的最小值為1,當(dāng)且僅當(dāng)x∈[1,2]時(shí),取最小值;
|x-1|+|x-2|+|x-3|的最小值2,當(dāng)且僅當(dāng)x=2時(shí),取最小值;
(2)設(shè)a1≤a2≤…≤an是給定的n個(gè)實(shí)數(shù),記S=|x-a1|+|x-a2|+…+|x-an|.
歸納可得:
若n為奇數(shù),則當(dāng)x∈{${a}_{\frac{n+1}{2}}$}時(shí)S取到最小值;
若n為偶數(shù),則當(dāng)x∈[${a}_{\frac{n}{2}}$,${a}_{\frac{n}{2}+1}$]時(shí),S取到最小值;
(3)|x-1|+|2x-1|+|3x-1|+…+|10x-1|=|x-1|+2|x-$\frac{1}{2}$|+3|x-$\frac{1}{3}$|+…+10|x-$\frac{1}{10}$|,
共55項(xiàng),其中第28項(xiàng)為|x-$\frac{1}{7}$|,
故x=$\frac{1}{7}$時(shí),|x-1|+|2x-1|+|3x-1|+…+|10x-1|取最小值:$\frac{6}{7}$+$\frac{5}{7}$+$\frac{4}{7}$+$\frac{3}{7}$+$\frac{2}{7}$+$\frac{1}{7}$+0+$\frac{1}{7}$+$\frac{2}{7}$+$\frac{3}{7}$=$\frac{27}{7}$,
故答案為:{${a}_{\frac{n+1}{2}}$},[${a}_{\frac{n}{2}}$,${a}_{\frac{n}{2}+1}$]
點(diǎn)評(píng) 歸納推理的一般步驟是:(1)通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x-1)2+(y-2)2=5 | B. | (x-2)2+(y-1)2=8 | C. | (x-4)2+(y-1)2=6 | D. | (x-2)2+(y-1)2=5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9 | B. | 11 | C. | 15 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com