13.試應(yīng)用二倍角的正弦、余弦公式化簡(jiǎn)并討論函數(shù)y=2cos2(x-$\frac{π}{4}$)-1的奇偶性與周期性.

分析 根據(jù)二倍角的余弦公式和誘導(dǎo)公式,化簡(jiǎn)函數(shù)y,再討論它的奇偶性與周期性.

解答 解:∵函數(shù)y=2cos2(x-$\frac{π}{4}$)-1
=cos2(x-$\frac{π}{4}$)
=cos(2x-$\frac{π}{2}$)
=cos($\frac{π}{2}$-2x)
=sin2x,
∴函數(shù)y是定義域R上的奇函數(shù),
且最小正周期為T=$\frac{2π}{2}$=π.

點(diǎn)評(píng) 本題考查了二倍角公式和誘導(dǎo)公式的應(yīng)用問題,也考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的首項(xiàng)為a1=$\frac{1}{2}$,且$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{2}$(n∈N*).
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=$\frac{1}{{a}_{n}}$,求數(shù)列{bn}的前5項(xiàng)和S5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知x∈(0,$\frac{π}{2}$),求函數(shù)f(x)=$\frac{1+cos2x+8si{n}^{2}x}{sin2x}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a,b,c分別為△ABC三個(gè)內(nèi)角的對(duì)邊,且$\sqrt{3}$cosC+sinC=$\frac{\sqrt{3}a}$.
(Ⅰ)求∠B的大小;
(Ⅱ)若a+c=5$\sqrt{7}$,b=7,求$\overrightarrow{AB}•\overrightarrow{BC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.二項(xiàng)式(x+$\frac{1}{x}$+2)6的展開式中,含x2項(xiàng)的系數(shù)為495.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè){an}是等比數(shù)列,如果a2=3,a4=6,則a6=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知α∈[$\frac{π}{6}$,$\frac{2}{3}$π],點(diǎn)A在角α的終邊上,且|OA|=4sinα,則點(diǎn)A縱坐標(biāo)的取值范圍是(  )
A.[2,2$\sqrt{3}$]B.[2,3]C.[2,4]D.[1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=\frac{1}{{9{{sin}^2}x}}+\frac{4}{{9{{cos}^2}x}},x∈({0,\frac{π}{2}})$,且f(x)≥t恒成立.
(1)求實(shí)數(shù)t的最大值;
(2)當(dāng)t取最大值時(shí),求不等式|x+t|+|x-2|≥5的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線$M:\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$與拋物線$y=\frac{1}{8}{x^2}$有公共焦點(diǎn)F,F(xiàn)到M的一條漸近線的距離為$\sqrt{3}$,則雙曲線方程為( 。
A.$\frac{x^2}{7}-\frac{y^2}{3}=1$B.$\frac{y^2}{3}-\frac{x^3}{7}=1$C.$\frac{x^2}{3}-{y^2}=1$D.${y^2}-\frac{x^2}{3}=1$

查看答案和解析>>

同步練習(xí)冊(cè)答案