11.設(shè)函數(shù)f(x)=sin(2x+$\frac{π}{4}$)(x∈[0,$\frac{9π}{8}$]),若方程f(x)=a恰好有三個(gè)根,分別為x1,x2,x3(x1<x2<x3),則x1+2x2+x3的值為$\frac{3π}{2}$.

分析 作出f(x)的函數(shù)圖象,根據(jù)圖象的對(duì)稱性得出結(jié)論.

解答 解:作出f(x)在[0,$\frac{9π}{8}$]上的函數(shù)圖象如圖所示:

由圖可知:x1,x2關(guān)于直線x=$\frac{π}{8}$對(duì)稱,x2,x3關(guān)于直線x=$\frac{5π}{8}$對(duì)稱,
∴x1+x2=$\frac{π}{4}$,x2+x3=$\frac{5π}{4}$,
∴x1+2x2+x3=$\frac{π}{4}+\frac{5π}{4}$=$\frac{3π}{2}$.
故答案為:$\frac{3π}{2}$.

點(diǎn)評(píng) 本題考查了正弦函數(shù)的圖象,方程根與函數(shù)圖象的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.某校從高一年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生,將他們的模塊測(cè)試成績(jī)分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,已知高一年級(jí)共有學(xué)生600名,據(jù)此估計(jì),該模塊測(cè)試成績(jī)不少于60分的學(xué)生人數(shù)為480.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)為F1,F(xiàn)2,其離心率為$\frac{{\sqrt{2}}}{2}$,又拋物線x2=4y在點(diǎn)P(2,1)處的切線恰好過(guò)橢圓C的一個(gè)焦點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)M(-4,0)斜率為k(k≠0)的直線l交橢圓C于A,B兩點(diǎn),直線AF1,BF1的斜率分別為k1,k2,是否存在常數(shù)λ,使得k1k+k2k=λk1k2?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,輸出的S的值為(  )
A.0B.-1C.$\frac{1}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定義在R上的偶函數(shù)f(x),滿足f(x+1)=f(x-1),且f(x)在[-3,-2]上是增函數(shù),又α、β是銳角三角形的兩個(gè)內(nèi)角,則(  )
A.f(sinα)>f(cosβ)B.f(cosα)<f(cosβ)C.f(sinα)<f(cosβ)D.f(sinα)<f(sinβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)函數(shù)f(x)=x2+bx+c(b,c∈R),若0≤f(1)=f(2)≤10,則( 。
A.0≤c≤2B.0≤c≤10C.2≤c≤12D.10≤c≤12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C的兩個(gè)頂點(diǎn)分別為A(-2,0),B(2,0),焦點(diǎn)在x軸上,離心率為$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)D為x軸上一點(diǎn),過(guò)D作x軸的垂線交橢圓C于不同的兩點(diǎn)M,N,過(guò)D
作AM的垂線交BN于點(diǎn)E.求△BDE與△BDN的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{8x-y-4≤0}\\{x+y+1≥0}\\{y-4x≤0}\end{array}\right.$,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為2,
(1)求a+4b的值.
(2)求$\frac{1}{a}$+$\frac{1}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.a(chǎn),b為不相等的正實(shí)數(shù),且a,x,y,b成等差數(shù)列,a,m,n,b成等比數(shù)列,則下列關(guān)系式:①x>m;②x>n;③y>m;④y>n;③x+y>m+n.
其中一定成立的關(guān)系式的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案