幾何體的三視圖如圖,則該幾何體的表面積為(  )
A、122+
3
B、122+2
3
C、122+2
6
D、122+
6
考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:根據(jù)幾何體的三視圖,得出該幾何體是長方體去掉一個三棱錐,畫出圖形,結(jié)合圖形求出它的表面積即可.
解答: 解:根據(jù)幾何體的三視圖,得;
該幾何體是長方體去掉一個三棱錐,如圖所示,
長方體的長為6,寬為4,高為4,
∴該三棱錐的三條互相垂直的棱長為2,底面為邊長2
2
的正三角形,
∴該幾何體的表面積為
S=2×6×4+2×4×4+2×6×4-3×
1
2
×2×2+
3
4
×2
2
×2
2

=122+2
3

故選:B.
點評:本題考查了空間幾何體的三視圖的應(yīng)用問題,是基礎(chǔ)題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

有一個細胞群,在一個小時里死亡兩個,剩下的細胞每個都分裂成兩個,假設(shè)開始有10個細胞,經(jīng)過
 
小時后,細胞的個數(shù)為14.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xoy中,直線l的參數(shù)方程為:
x=t
y=1+kt
(t為參數(shù)),以O(shè)為原點,ox軸為極軸,單位長度不變,建立極坐標系,曲線C的極坐標方程為:ρsin2θ=4cosθ
①寫出直線l和曲線C的普通方程;
②若直線l和曲線C相切,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,則雙曲線
x2
a2
-
y2
b2
=1的漸近線方程為( 。
A、y=±
1
2
x
B、y=±2x
C、y=±4x
D、y=±
1
4
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,F(xiàn)D垂直于矩形ABCD所在平面,CE∥DF,∠DEF=90°.
(Ⅰ)求證:BE∥平面ADF;
(Ⅱ)若矩形ABCD的一個邊AB=
3
,EF=2
3
,則另一邊BC的長為何值時,二面角B-EF-D的大小為45°?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有5道試題,其中甲類試題2道,乙類試題3道,現(xiàn)從中隨機取2道試題,則至少有1道試題是乙類試題的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下五個結(jié)論:
①函數(shù)f(x)=x 
1
3
-(
1
2
x的零點在區(qū)間(
1
3
,
1
2
)內(nèi);
②平面內(nèi)的動點P到點F(-2,3)和到直線l:2x+y+1=0的距離相等,則點P的軌跡為拋物線;
③?x>0,不等式2x+
a
x
≥4成立的充要條件a≥2;
④若將函數(shù)f(x)=sin(2x-
π
3
)的圖象向右平移φ(φ>0)個單位后變?yōu)榕己瘮?shù),則φ的最小值是
π
12

⑤過M(2,0)的直線l與橢圓
x2
2
+y2=1交于P1,P2兩點,線段P1P2中點為P,設(shè)直線l的斜率為k1(k1≠0),直線OP的斜率為k2,則k1k2等于-
1
2
,
其中正確結(jié)論的個數(shù)是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)命題p:?x∈R,x2+x≥a;命題q:?x0∈R,x02+2ax0+2-a=0,如果命題p真且命題q假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x∈[-
π
3
,
π
4
],則函數(shù)y=
1
cos2x
+2tanx+1的最小值為
 
,最大值為
 

查看答案和解析>>

同步練習冊答案