已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0,分別求滿足下列條件的a、b的值.

(1) 直線l1過點(-3,-1),且l1⊥l2;

(2) 直線l1與l2平行,且坐標原點到l1、l2的距離相等.

 

(1)a=2,b=2(2)

【解析】(1) ∵ l1⊥l2,∴ a(a-1)+(-b)·1=0, 即a2-a-b=0 ①.又點(-3,-1)在l1上,∴ -3a+b+4=0 ②,由①②解得 a=2,b=2.

(2) ∵ l1∥l2且l2的斜率為1-a. ∴ l1的斜率存在,即=1-a,b=.故l1和l2的方程可分別表示為l1:(a-1)x+y+=0,l2:(a-1)x+y+=0.∵ 原點到l1和l2的距離相等,

∴ 4 ,解得a=2或.因此

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第九章第6課時練習卷(解析版) 題型:解答題

設(shè)橢圓的中心在原點,對稱軸為坐標軸,且長軸長是短軸長的2倍.又點P(4,1)在橢圓上,求該橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第九章第4課時練習卷(解析版) 題型:解答題

如圖,圓O1與圓O2的半徑都是1,O1O2=4,過動點P分別作圓O1、圓O2的切線PM、PN(M、N分別為切點),使得PM=PN,試建立適當?shù)淖鴺讼担⑶髣狱cP的軌跡方程.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第九章第3課時練習卷(解析版) 題型:解答題

如圖,在平面直角坐標系xOy中,已知點A為橢圓=1的右頂點,點D(1,0),點P、B在橢圓上,.

(1) 求直線BD的方程;

(2) 求直線BD被過P、A、B三點的圓C截得的弦長;

(3) 是否存在分別以PB、PA為弦的兩個相外切的等圓?若存在,求出這兩個圓的方程;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第九章第3課時練習卷(解析版) 題型:解答題

直線l1:2x+y-4=0,求l1關(guān)于直線l:3x+4y-1=0對稱的直線l2的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第九章第3課時練習卷(解析版) 題型:填空題

已知直線x+ay=2a+2與直線ax+y=a+1平行,則實數(shù)a的值為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題

設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點與上頂點,直線A2B與圓C:x2+y2=1相切.

(1)求證:=1;

(2)P是橢圓E上異于A1、A2的一點,若直線PA1、PA2的斜率之積為-,求橢圓E的方程;

(3)直線l與橢圓E交于M、N兩點,且·=0,試判斷直線l與圓C的位置關(guān)系,并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第九章第11課時練習卷(解析版) 題型:填空題

以雙曲線-3x2+y2=12的焦點為頂點,頂點為焦點的橢圓的方程是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年陜西西工大附中高三上學期第四次適應(yīng)性訓練理數(shù)學卷(解析版) 題型:選擇題

,則的值是( )

A. B.1 C. D.2

 

查看答案和解析>>

同步練習冊答案