【題目】在直角坐標系xOy中,已知點P(2,0),曲線C的參數(shù)方程為 (t為參數(shù)).以坐標原點為極點,x軸正半軸為極軸建立極坐標系. (Ⅰ)求曲線C的普通方程和極坐標方程;
(Ⅱ)過點P且傾斜角為 的直線l交曲線C于A,B兩點,求|AB|.

【答案】解:(Ⅰ)因為 消t得曲線C的普通方程為y2=4x.

∵x=ρcosθ,y=ρsinθ,∴ρ2sin2θ=4ρcosθ,

即曲線C的極坐標方程為ρsin2θ=4cosθ.

(Ⅱ)因為直線l過點P(2,0)且傾斜角為

所以直線l的標準參數(shù)方程為 ,

將其代入y2=4x,整理可得 ,

,

設(shè)A,B對應的參數(shù)分別為s1,s2 ,

所以


【解析】(Ⅰ)利用三種方程的轉(zhuǎn)化方法,即可求曲線C的普通方程和極坐標方程;(Ⅱ)直線l的標準參數(shù)方程為 ,將其代入y2=4x,利用參數(shù)的幾何意義,即可求|AB|.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,角A,B,C的對邊分別為a,b,c,且 + =
(1)求b的值;
(2)若cosB+ sinB=2,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin2ωx﹣ (ω>0)的周期為 ,若將其圖象沿x軸向右平移a個單位(a>0),所得圖象關(guān)于原點對稱,則實數(shù)a的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)P是橢圓上一點,M,N分別是兩圓(x+4)2y2=1(x-4)2y2=1上的點,則|PM|+|PN|的最小值、最大值分別為 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ax2在(0,+∞)上單調(diào)遞減,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別為a,b,c,滿足(2a﹣c)cosB=bcosC.
(1)求B的大;
(2)如圖,AB=AC,在直線AC的右側(cè)取點D,使得AD=2CD=4.當角D為何值時,四邊形ABCD面積最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列{an}的前n項和為Sn , S2n﹣12+S2n2=4(a2n﹣2),則2a1+a100=(
A.﹣8
B.﹣6
C.0
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,則k的取值范圍是(
A.(2,+∞)
B.(1,+∞)
C.( ,+∞)
D.( ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)在R上存在導數(shù)f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.則實數(shù)m的取值范圍為( )
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)

查看答案和解析>>

同步練習冊答案