精英家教網(wǎng)在長(zhǎng)方體ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3,求異面直線A1B與B1C所成角的大。ńY(jié)果用反三角函數(shù)值表示).
分析:連接A1D,將B1C平移到A1D,根據(jù)異面直線所成角的定義可知∠BA1D為異面直線A1B與B1C所成的角,在△A1DB中利用余弦定理求出此角的余弦值.
解答:解:連接A1D,∵A1D∥B1C,
∴∠BA1D為異面直線A1B與B1C所成的角.
連接BD,在△A1DB中,A1B=A1D=5,BD=4
2

cos∠BA1D=
A1B2+A1D2-BD2
2•A1B•A1D
=
25+25-32
2•5•5
=
9
25

∴異面直線A1B與B1C所成角的余弦值為
9
25

即異面直線A1B與B1C所成角的大小為arccos
9
25
點(diǎn)評(píng):本小題主要考查異面直線所成的角,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在長(zhǎng)方體ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,則AA′和BC′所成的角是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體ABCD-A′B′C′D′中,用截面截下一個(gè)棱錐C-A′DD′,求棱錐C-A′DD′的體積與剩余部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•上海) 如圖,在長(zhǎng)方體ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•青浦區(qū)二模)(理)在長(zhǎng)方體ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)頂點(diǎn)D'到平面B'AC的距離;
(2)二面角B-AC-B'的大。ńY(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知在長(zhǎng)方體ABCD-A′B′C′D′中,點(diǎn)E為棱CC′上任意一點(diǎn),AB=BC=2,CC′=1.
(Ⅰ)求證:平面ACC′A′⊥平面BDE;
(Ⅱ)若點(diǎn)P為棱C′D′的中點(diǎn),點(diǎn)E為棱CC′的中點(diǎn),求二面角P-BD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案