【題目】已知非零向量,滿足(2-)⊥,集合A={x|x2+(||+||)x+||||=0}中有且僅有唯一一個元素.
(1)求向量,的夾角θ;
(2)若關于t的不等式|-t|<|-m|的解集為空集,求實數(shù)m的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(2-a)x-2(1+ln x)+a,若函數(shù)f(x)在區(qū)間上無零點,求實數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()在區(qū)間(0,)上至多取到兩次最大值,且在區(qū)間(,)上不單調,則滿足條件的的個數(shù)是( 。
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓C:過點M(2,0),且右焦點為F(1,0),過F的直線l與橢圓C相交于A、B兩點.設點P(4,3),記PA、PB的斜率分別為k1和k2.
(1)求橢圓C的方程;
(2)如果直線l的斜率等于-1,求出k1k2的值;
(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為[﹣1,5],部分對應值如表,f(x)的導函數(shù)y=f′(x)的圖象如圖所示.
x | ﹣1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
下列關于函數(shù)f(x)的命題:
①函數(shù)y=f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當x∈[﹣1,t]時,f(x)的最大值是2,那么t的最大值為5;
④當1<a<2時,函數(shù)y=f(x)﹣a有4個零點.
其中所有真命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象與軸的交點為,它在軸右側的第一個最高點和第一個最低點的坐標分別為和.
(1)求解析式及的值;
(2)求的單調增區(qū)間;
(3)若時,函數(shù)有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=-x2+2mx+7.
(Ⅰ)已知函數(shù)y=(x)在區(qū)間[1,3]上的最小值為4,求m的值;
(Ⅱ)若不等式f(x)≤x2-6x+11在區(qū)間[1,2]上恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:
月份 | 1 | 2 | 3 |
利潤 | 2 | 3.9 | 5.5 |
(1)求利潤關于月份的線性回歸方程;
(2)試用(1)中求得的回歸方程預測4月和5月的利潤;
(3)試用(1)中求得的回歸方程預測該公司2016年從幾月份開始利潤超過1000萬?
相關公式:.
【答案】(1);(2)905萬;(3)6月
【解析】試題(1)根據(jù)平均數(shù)和最小二乘法的公式,求解,求出,即可求解回歸方程;(2)把和分別代入,回歸直線方程,即可求解;(3)令,即可求解的值,得出結果.
試題解析:(1),,,
故利潤關于月份的線性回歸方程.
(2)當時,,故可預測月的利潤為萬.
當時,, 故可預測月的利潤為萬.
(3)由得,故公司2016年從月份開始利潤超過萬.
考點:1、線性回歸方程;2、平均數(shù).
【題型】解答題
【結束】
21
【題目】已知定義在上的函數(shù)(),并且它在上的最大值為
(1)求的值;
(2)令,判斷函數(shù)的奇偶性,并求函數(shù)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com