設數(shù)列{an}滿足:an(n∈N*)是整數(shù),且an+1-an是關于x的方程x2+(an+1-2)x-2an+1=0的根.
(1)若a1=4且n≥2時,4≤an≤8求數(shù)列{an}的前100項和S100;
(2)若a1=-8,a6=1且an<an+1(n∈N*)求數(shù)列{an}的通項公式.
解:(1)∵a
n+1-a
n是關于x的方程x
2+(a
n+1-2)x-2a
n+1=0的根
∴(a
n+1-a
n)
2+(a
n+1-2)(a
n+1-a
n)-2a
n+1=0
∴(a
n+1-a
n-2)(2a
n+1-a
n)=0
∴a
n+1=a
n+2,或a
n+1=
a
n,
∵a
1=4且n≥2時,4≤a
n≤8,
∴數(shù)列{a
n}為:4,6,8,4,6,8,…,
∴數(shù)列{a
n}的前100項和S
100=33(4+6+8)+8=598;
(2)若a
1=-8且a
n<a
n+1(n∈N
*)
∵a
n+1=a
n+2,或a
n+1=
a
n,
∴數(shù)列{a
n}的前6項是:-8,-6,-4,-2,0,2或-8,-6,-4,-2,-1,1或:-8,-6,-3,-1,1,3或-8,-6,-2,0,2,4或-8,-6,-2,-1,1,3
∵a
6=1,∴數(shù)列{a
n}的前6項是-8,-6,-4,-2,-1,1,且n>4時,a
n+1=a
n+2,
∴數(shù)列{a
n}的通項公式是
;
分析:(1)利用a
n+1-a
n是關于x的方程x
2+(a
n+1-2)x-2a
n+1=0的根,可得a
n+1=a
n+2,或a
n+1=
a
n,結(jié)合a
1=4且n≥2時,4≤a
n≤8,即可得到結(jié)論;
(2)根據(jù)條件,確定數(shù)列{a
n}的前6項是-8,-6,-4,-2,-1,1,且n>4時,a
n+1=a
n+2,從而可得數(shù)列{a
n}的通項公式.
點評:本題考查數(shù)列的通項與求和,考查學生分析解決問題的能力,屬于中檔題.