設(shè)a,b∈R,那么“b(a-b)>0”是“a>b>0”的(  )
A、充分不必要條件B、必要不充分條件C、充要條件D、既不充分也不必要條件
分析:利用充分條件和必要條件的定義進(jìn)行判斷即可.
解答:解:若a>b>0,則a-b>0,此時(shí)b(a-b)>0成立.
當(dāng)a=-2,b=-1,滿足b(a-b)>0,但a>b>0不成立,
∴“b(a-b)>0”是“a>b>0”必要不充分條件.
故選:B.
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,利用不等式的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題的個(gè)數(shù)是
(1)命題“若x=1,則x2+x-2=0”的否命題為“若x=1,則x2+x-2≠0”;
(2)若命題p:?x0∈(-∞,0],(
1
2
)x0
≥1,則?p:?x∈(0,+∞),(
1
2
)x
<1;
(3)設(shè)命題p:?x0∈(-∞,0),2x03x0,命題q:?x∈(0,
π
2
),tanx>sinx,則(?p)∧q為真命題;
(4)設(shè)a,b∈R,那么“ab+1>a+b”是“a2+b2<1”的必要不充分條件.( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泉州模擬)設(shè)a,b∈R,那么“
a
b
>1
”是“a>b>0”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R,那么下列命題正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題的個(gè)數(shù)是( 。
(1)命題“若x=1,則x2+x-2=0”的否命題為“若x=1,則x2+x-2≠0”;
(2)若命題p:?x0∈(-∞,0],(
1
2
)
x0
≥1,則¬p:?x∈(0,+∞),(
1
2
x<1;
(3)設(shè)命題p:?x0∈(0,∞),log2x0<log3x0,命題q:?x∈(0,
π
2
),tanx>sinx則p∧q為真命題;
(4)設(shè)a,b∈R,那么“ab+1>a+b”是“a2+b2<1”的必要不充分條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案