4.(x3+2)(1+$\frac{1}{x}$)5的展開式中的常數(shù)項(xiàng)是   12.

分析 利用二項(xiàng)式定理展開即可得出.

解答 解:(x3+2)(1+$\frac{1}{x}$)5=(x3+2)(1+${∁}_{5}^{1}•\frac{1}{x}$+${∁}_{5}^{2}$$•\frac{1}{{x}^{2}}$+${∁}_{5}^{3}\frac{1}{{x}^{3}}$+…),
∴展開式中的常數(shù)項(xiàng)=2×1+${∁}_{5}^{3}$=12.
故答案為:12.

點(diǎn)評 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力應(yīng)用計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知正項(xiàng)等比數(shù)列{an}中,a1a5=9,S3=$\frac{21}{4}$,則log2a10的值為( 。
A.8B.8+log23C.9+log23D.7+log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法:
①分類變量A與B的隨機(jī)變量x2越大,說明“A與B有關(guān)系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=2,$\overline x=1,\overline y=3$,則a=1.正確的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{3}a{x^3}-\frac{1}{2}b{x^2}$+x(a,b∈R).
(Ⅰ)當(dāng)a=2,b=3時,求函數(shù)f(x)極值;
(Ⅱ)設(shè)b=a+1,當(dāng)0≤a≤1時,對任意x∈[0,2],都有m≥|f'(x)|恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}的首項(xiàng)為2,且數(shù)列{an}滿足${a_{n+1}}=\frac{{{a_n}-1}}{{{a_n}+1}}$,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,則S2017=( 。
A.-586B.-588C.-590D.-504

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{16}$=1(a>0)的漸近線方程是y=±$\frac{4}{3}$x,則其準(zhǔn)線方程為x=±$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓E的中心在坐標(biāo)原點(diǎn),以坐標(biāo)軸為對稱軸,其右焦點(diǎn)為F(1,0),點(diǎn)A(0,1)在橢圓上,過點(diǎn)A作兩條直線,與橢圓E分別交于M,N兩點(diǎn),直線AM,AN的斜率乘積為-1.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:直線MN過定點(diǎn),并求定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某學(xué)校為了解學(xué)校食堂的服務(wù)情況,隨機(jī)調(diào)查了50名就餐的教師和學(xué)生.根據(jù)這50名師生對餐廳服務(wù)質(zhì)量進(jìn)行評分,繪制出了頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組為[40,50),[50,60),…,[90,100].
(1)求頻率分布直方圖中a的值;
(2)從評分在[40,60)的師生中,隨機(jī)抽取2人,求此人中恰好有1人評分在[40,50)上的概率;
(3)學(xué)校規(guī)定:師生對食堂服務(wù)質(zhì)量的評分不得低于75分,否則將進(jìn)行內(nèi)部整頓,試用組中數(shù)據(jù)估計該校師生對食堂服務(wù)質(zhì)量評分的平均分,并據(jù)此回答食堂是否需要進(jìn)行內(nèi)部整頓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,已知a=6,b=5,c=4,則△ABC的面積為$\frac{15\sqrt{7}}{4}$.

查看答案和解析>>

同步練習(xí)冊答案