精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,其中左焦點F(﹣2,0).
(1)求橢圓C的方程;
(2)若直線y=x+m與橢圓C交于不同的兩點A,B,且線段的中點M在圓x2+y2=1上,求m的值.

【答案】
(1)解:由題意,得

解得 ∴橢圓C的方程為


(2)解:設點A、B的坐標分別為(x1,y1),(x2,y2),線段AB的中點為M(x0,y0),

消y得,3x2+4mx+2m2﹣8=0,

△=96﹣8m2>0,∴﹣2 <m<2

=﹣ ,

∵點M(x0,y0)在圓x2+y2=1上,∴ ,∴


【解析】(1)由題意,得 由此能夠得到橢圓C的方程.(2)設點A、B的坐標分別為(x1 , y1),(x2 , y2),線段AB的中點為M(x0 , y0),由 消y得,3x2+4mx+2m2﹣8=0,再由根的判斷式結合題設條件能夠得到m的值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知曲線的極坐標方程為,在以極點為直角坐標原點,極軸為軸的正半軸建立的平面直角坐標系中,直線的參數方程為為參數).

(1)寫出直線的普通方程與曲線的直角坐標方程;

(2)在平面直角坐標系中,設曲線經過伸縮變換 得到曲線,若為曲線上任意一點,求點到直線的最小距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位舉行聯歡活動,每名職工均有一次抽獎機會,每次抽獎都是從甲箱和乙箱中各隨機摸取1個球,已知甲箱中裝有3個紅球,5個綠球,乙箱中裝有3個紅球,3個綠球,2個黃球.在摸出的2個球中,若都是紅球,則獲得一等獎;若都是綠球,則獲得二等獎;若只有1個紅球,則獲得三等獎;若1個綠球和1個黃球,則不獲獎.
(1)求每名職工獲獎的概率;
(2)設X為前3名職工抽獎中獲得一等獎和二等獎的次數之和,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,是一塊足球訓練場地,其中球門AB寬7米,B點位置的門柱距離邊線EF的長為21米,現在有一球員在該訓練場地進行直線跑動中的射門訓練.球員從離底線AF距離x(x≥10)米,離邊線EF距離a(7≤a≤14)米的C處開始跑動,跑動線路為CD(CD∥EF),設射門角度∠ACB=θ.

(1)若a=14,
①當球員離底線的距離x=14時,求tanθ的值;
②問球員離底線的距離為多少時,射門角度θ最大?
(2)若tanθ= ,當a變化時,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,EAB的中點.

(Ⅰ)求證:AN∥平面MEC;

(Ⅱ)在線段AM上是否存在點P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長h;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,△ABC是邊長為6的正三角形,設 (x,y∈R).

(1)若x=y=1,求| |;
(2)若 =36, =54,求x,y.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設{an}是公比為正整數的等比數列,{bn}是等差數列,且a1a2a3=64,b1+b2+b3=﹣42,6a1+b1=2a3+b3=0.
(1)求數列{an}和{bn}的通項公式;
(2)設pn= ,數列{pn}的前n項和為Sn
①試求最小的正整數n0 , 使得當n≥n0時,都有S2n>0成立;
②是否存在正整數m,n(m<n),使得Sm=Sn成立?若存在,請求出所有滿足條件的m,n;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】參加衡水中學數學選修課的同學,對某公司的一種產品銷量與價格進行統計,得到如下數據和散點圖:

定價(元/

年銷售

(參考數據:

(I)根據散點圖判斷,哪一對具有較強的線性相關性(給出判斷即可,不必說明理由)?

(II)根據(I)的判斷結果有數據,建立關于的回歸方程(方程中的系數均保留兩位有效數字);

(III)定價為多少元/時,年利潤的預報值最大?

附:對一組數據,其回歸直線的斜率和截距的最小二乘估計分別為:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的方程為,過點的一條直線與拋物線交于兩點,若拋物線在兩點的切線交于點.

(1)求點的軌跡方程;

(2)設直線與直線的夾角為,求的取值范圍.

查看答案和解析>>

同步練習冊答案