【題目】已知函數(shù)(a>0).

(1)討論函數(shù)f(x)的單調性;

(2)證明:對任意x[1,+∞),有f(x)≤2x-a2

【答案】(1)詳見解析(2)詳見解析

【解析】

(1)對函數(shù)求導,分情況討論導函數(shù)的正負,進而得到單調區(qū)間;(2)構造函數(shù),對函數(shù)求導,研究函數(shù)的單調性,得到函數(shù)的最值,證明函數(shù)的最大值小于0即可.

(1)解:

①當0<a≤1時,由f'(x)<0,得[(1+a)x-1][(1-a)x+1]<0,

解得;

由f'(x)>0,得[(1+a)x-1][(1-a)x+1]>0,解得

故函數(shù)f(x)的單調遞減區(qū)間為(0,),單調遞增區(qū)間為(,+∞).

②當a>1時,由f'(x)<0,得;

由f'(x)>0,得

故函數(shù)f(x)的單調遞減區(qū)間為(0,),(,+∞),單調遞增區(qū)間為

(2)證明:構造函數(shù),

因為Δ=(2a)2-4(1+a2)<0,

所以(1+a2)x2-2ax+1>0,即g'(x)<0.

故g(x)在區(qū)間[1,+∞)上是減函數(shù).

又x≥1,所以g(x)≤g(1)=-(1+a2)+1+a2=0.

故對任意x∈[1,+∞),有f(x)≤2x-a2

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)在某一個周期內的圖象時,列表并填入了部分數(shù)據,如下表:

0

0

2

0

0

(1)請將上表數(shù)據補充完整,填寫在相應位置,并求出函數(shù)的解析式;

(2)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1,BC=BB1,BAC=BCA=ABC,EA1BAB1的交點,D在線段AC,B1C∥平面A1BD.

(1)求證:BDA1C;

(2)求證:AB1⊥平面A1BC。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列的各項均為正數(shù),且的前項和是.

(1)若是遞增數(shù)列,求的取值范圍;

(2)若,且對任意,都有,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國務院批準從2009年起,將每年88日設置為全民健身日”,為響應國家號召,各地利用已有土地資源建設健身場所.如圖,有一個長方形地塊,邊,.地塊的一角是草坪(圖中陰影部分),其邊緣線是以直線為對稱軸,以為頂點的拋物線的一部分.現(xiàn)要鋪設一條過邊緣線上一點的直線型隔離帶,,分別在邊上(隔離帶不能穿越草坪,且占地面積忽略不計),將隔離出的作為健身場所.則的面積為的最大值為____________(單位:).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)試探究函數(shù)在定義域內是否存在零點,若存在,請指出有幾個零點;若不存在,請說明理由;

(Ⅲ)若,且上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設關于某種設備的使用年限(年)與所支出的維修費用 (萬元)有如下統(tǒng)計:

2

3

4

5

6

2.2

3.8

5.5

6.5

7.0

已知, .

(1)求,

(2)具有線性相關關系,求出線性回歸方程;

(3)估計使用年限為10年時,維修費用約是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

(1) 求函數(shù)的解析式;

(2) 如何由函數(shù)的通過適當圖象的變換得到函數(shù)的圖象, 寫出變換過程;

(3) 若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的圖像可以由y=cos2x的圖像先縱坐標不變橫坐標伸長到原來的2倍,再橫坐標不變縱坐標伸長到原來的2倍,最后向右平移個單位而得到.

⑴求f(x)的解析式與最小正周期;

⑵求f(x)在x∈(0,π)上的值域與單調性.

查看答案和解析>>

同步練習冊答案