【題目】已知函數(shù)

(I)求函數(shù)在點(diǎn)(1,0)處的切線方程;

(II)設(shè)實(shí)數(shù)k使得f(x)< kx恒成立,求k的范圍;

(III)設(shè)函數(shù),求函數(shù)h(x)在區(qū)間上的零點(diǎn)個(gè)數(shù).

【答案】;(;(Ⅲ)見解析。

【解析】分析I)根據(jù)導(dǎo)數(shù)的幾何意義求解即可.(II)分離參數(shù),轉(zhuǎn)化為恒成立求解.令,可求得函數(shù)的最大值為,進(jìn)而可得結(jié)論.(III)由分離參數(shù)可得,借助(II)中的結(jié)論并結(jié)合函數(shù)的圖象根據(jù)數(shù)形結(jié)合的方法可得函數(shù)零點(diǎn)的個(gè)數(shù).

詳解:(I)

,

,

∴所求切線方程為

(II)由題意得恒成立等價(jià)于對(duì)恒成立.

,則

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減,

∴當(dāng)時(shí),有最大值,且最大值為,

∴實(shí)數(shù)k的范圍是

(III)由,即

,

函數(shù)h(x)在區(qū)間上的零點(diǎn)個(gè)數(shù)即為函數(shù)的圖象與函數(shù)的圖象在上的公共點(diǎn)的個(gè)數(shù).

由(II)得函數(shù)上單調(diào)遞增,上單調(diào)遞減,且的最大值為,

,

∴當(dāng)或者時(shí),函數(shù)0個(gè)零點(diǎn);

當(dāng)或者時(shí),函數(shù)1個(gè)零點(diǎn);

當(dāng)時(shí),函數(shù)2個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的外接球的表面積為25π,該三棱錐的三視圖如圖所示,三個(gè)視圖的外輪廓都是直角三角形,則其側(cè)視圖面積的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下結(jié)論,其中正確結(jié)論的個(gè)數(shù)為( )

①函數(shù)的零點(diǎn)為,則函數(shù)的圖象經(jīng)過點(diǎn)時(shí),函數(shù)值一定變號(hào).

②相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號(hào).

③函數(shù)在區(qū)間上連續(xù),若滿足,則方程在區(qū)間上一定有實(shí)根.

④“二分法”對(duì)連續(xù)不斷的函數(shù)的所有零點(diǎn)都有效.

A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求處的切線方程;

(2)若在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)(其中aR).

1)討論函數(shù)fx)的奇偶性,并說明理由.

2)若,試判斷函數(shù)fx)在區(qū)間[1,+∞)上的單調(diào)性,并用函數(shù)單調(diào)性定義給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ , g(x)=x+lnx,其中a>0,且x∈(0,+∞).
(1)若a=1,求f(x)的最小值;
(2)若對(duì)任意x≥1,不等式f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱ABCD-A1B1C1D1中,,平面BB1C1C底面ABCD,點(diǎn)、F分別是線段、BC的中點(diǎn).

(1)求證:AF//平面

(2)求證:平面BB1C1C⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年10月19日,由中國(guó)工信部、江西省政府聯(lián)合主辦的世界VR(虛擬現(xiàn)實(shí))產(chǎn)業(yè)大會(huì)在南昌開幕,南昌在紅谷灘新區(qū)建立VR特色小鎮(zhèn)項(xiàng)目.現(xiàn)某廠商抓住商機(jī)在去年用450萬元購進(jìn)一批VR設(shè)備,經(jīng)調(diào)試后今年投入使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用22萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬元,該設(shè)備使用后,每年的總收入為180萬元,設(shè)使用x年后設(shè)備的盈利額為y萬元.

(1)寫出yx之間的函數(shù)關(guān)系式;

(2)使用若干年后,當(dāng)年平均盈利額達(dá)到最大值時(shí),求該廠商的盈利額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】遼寧號(hào)航母紀(jì)念章從2012105日起開始上市,通過市場(chǎng)調(diào)查,得到該紀(jì)念章每枚的市場(chǎng)價(jià)(單位:元)與上市時(shí)間(單位:天)的數(shù)據(jù)如下:

上市時(shí)間

市場(chǎng)價(jià)

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述遼寧號(hào)航母紀(jì)念章的市場(chǎng)價(jià)與上市時(shí)間的變化關(guān)系:①;②;③;

(2)利用你選取的函數(shù),求遼寧號(hào)航母紀(jì)念章市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格;

(3)設(shè)你選取的函數(shù)為,若對(duì)任意實(shí)數(shù),關(guān)于的方程恒有個(gè)想異實(shí)數(shù)根,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案