【題目】2018年10月19日,由中國工信部、江西省政府聯(lián)合主辦的世界VR(虛擬現(xiàn)實(shí))產(chǎn)業(yè)大會(huì)在南昌開幕,南昌在紅谷灘新區(qū)建立VR特色小鎮(zhèn)項(xiàng)目.現(xiàn)某廠商抓住商機(jī)在去年用450萬元購進(jìn)一批VR設(shè)備,經(jīng)調(diào)試后今年投入使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用22萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬元,該設(shè)備使用后,每年的總收入為180萬元,設(shè)使用x年后設(shè)備的盈利額為y萬元.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)使用若干年后,當(dāng)年平均盈利額達(dá)到最大值時(shí),求該廠商的盈利額.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)內(nèi)有一塊以為圓心半徑為20米的圓形區(qū)域.廣場(chǎng),為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計(jì)方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺(tái),舞臺(tái)為扇形區(qū)域,其中兩個(gè)端點(diǎn),分別在圓周上;觀眾席為梯形內(nèi)且在圓外的區(qū)域,其中,,且,在點(diǎn)的同側(cè).為保證視聽效果,要求觀眾席內(nèi)每一個(gè)觀眾到舞臺(tái)處的距離都不超過60米.設(shè).
(1)求的長(用表示);
(2)對(duì)于任意,上述設(shè)計(jì)方案是否均能符合要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)求函數(shù)在點(diǎn)(1,0)處的切線方程;
(II)設(shè)實(shí)數(shù)k使得f(x)< kx恒成立,求k的范圍;
(III)設(shè)函數(shù),求函數(shù)h(x)在區(qū)間上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)上一點(diǎn)P(3,t)到其焦點(diǎn)的距離為4.
(1)求p的值;
(2)過點(diǎn)Q(1,0)作兩條直線l1 , l2與拋物線分別交于點(diǎn)A、B和C、D,點(diǎn)M,N分別是線段AB和CD的中點(diǎn),設(shè)直線l1 , l2的斜率分別為k1 , k2 , 若k1+k2=3,求證:直線MN過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的長軸長為6,且橢圓與圓: 的公共弦長為.
(1)求橢圓的方程.
(2)過點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn), ,試判斷在軸上是否存在點(diǎn),使得為以為底邊的等腰三角形.若存在,求出點(diǎn)的橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的通項(xiàng)為an=log(n+1)(n+2)(n∈N*),我們把使乘積a1a2a3…an為整數(shù)的n叫做“優(yōu)數(shù)”,則在(0,2015]內(nèi)的所有“優(yōu)數(shù)”的和為( )
A.1024
B.2012
C.2026
D.2036
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD滿足AD∥BC,BA=AD=DC=BC=a,E是BC的中點(diǎn),將△BAE沿AE折起到△B1AE的位置,使平面B1AE⊥平面AECD,F(xiàn)為B1D的中點(diǎn).
(1)證明:B1E∥平面ACF;
(2)求平面ADB1與平面ECB1所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)f(x)=(2x-x2)ex
①(-,)是f(x)的單調(diào)遞減區(qū)間;
②f(-)是f(x)的極小值,f()是f(x)的極大值;
③f(x)沒有最大值,也沒有最小值;
④f(x)有最大值,沒有最小值.
其中判斷正確的是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,攝影愛好者在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測(cè)得立柱頂端O的仰角和立柱底部B的俯角均為,已知攝影愛好者的身高約為米(將眼睛S距地面的距離SA按米處理).
(1)求攝影愛好者到立柱的水平距離AB和立柱的高度OB;
(2)立柱的頂端有一長為2米的彩桿MN,且MN繞其中點(diǎn)O在攝影愛好者與立柱所在的平面內(nèi)旋轉(zhuǎn).在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影愛好者觀察彩桿MN的視角(設(shè)為)是否存在最大值?若存在,請(qǐng)求出取最大值時(shí)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com