分析 根據(jù)矩陣特征值和特征向量的性質(zhì)代入列方程組,求得a、b、c和d的值,求得矩陣A,丨A丨及A*,由A-1=$\frac{1}{丨A丨}$×A*,即可求得A-1.
解答 解:矩陣A屬于特征值6的一個特征向量為$\overrightarrow{{α}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,
∴$[\begin{array}{l}{a}&\\{c}&jnp8o9k\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=6$[\begin{array}{l}{1}\\{1}\end{array}]$,即$[\begin{array}{l}{a+b}\\{c+d}\end{array}]$=$[\begin{array}{l}{6}\\{6}\end{array}]$,
屬于特征值1的一個特征向量為$\overrightarrow{{α}_{2}}$=$[\begin{array}{l}{3}\\{-2}\end{array}]$.
∴$[\begin{array}{l}{a}&\\{c}&sxkgiws\end{array}]$$[\begin{array}{l}{3}\\{-2}\end{array}]$=$[\begin{array}{l}{3}\\{-2}\end{array}]$,$[\begin{array}{l}{3a-2b}\\{3c-2d}\end{array}]$=$[\begin{array}{l}{3}\\{-2}\end{array}]$,
∴$\left\{\begin{array}{l}{a+b=6}\\{c+d=6}\\{3a-2b=3}\\{3c-2d=-2}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=3}\\{b=3}\\{c=2}\\{d=4}\end{array}\right.$,
矩陣A=$[\begin{array}{l}{3}&{3}\\{2}&{4}\end{array}]$,
丨A丨=$|\begin{array}{l}{3}&{3}\\{2}&{4}\end{array}|$=6,A*=$[\begin{array}{l}{4}&{-3}\\{-2}&{3}\end{array}]$,
A-1=$\frac{1}{丨A丨}$×A*=$[\begin{array}{l}{\frac{2}{3}}&{-\frac{1}{2}}\\{-\frac{1}{3}}&{\frac{1}{2}}\end{array}]$,
∴A-1=$[\begin{array}{l}{\frac{2}{3}}&{-\frac{1}{2}}\\{-\frac{1}{3}}&{\frac{1}{2}}\end{array}]$.
點(diǎn)評 本題考查矩陣的特征值及特征向量的性質(zhì),考查逆矩陣的求法,考查計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<-2 | B. | a>2 | C. | a≤-2 | D. | a≥2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 1 | C. | -1 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0) | B. | (-1,+∞) | C. | (0,+∞) | D. | (-∞,-1)∪(0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a2-1 | B. | a2-2a+2 | C. | a2-2a+1 | D. | a2-a+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com