2.已知三條直線l1:2x-y+a=0(a>0),直線l2:-4x+2y-1=0和l3:x+y+3=0,且l1與l2間的距離是$\frac{{\sqrt{5}}}{2}$
(1)求a的值;
(2)求經(jīng)過直線l1與l3的交點(diǎn),且與點(diǎn)(1,3)距離為3的直線l的方程.

分析 (1)由l1與l2的距離是$\frac{\sqrt{5}}{2}$,代入兩條平行直線間的距離公式,可得一個(gè)關(guān)于a的方程,解方程即可求a的值;
(2)求出交點(diǎn)坐標(biāo),設(shè)出直線方程,利用點(diǎn)到直線的距離公式求解即可.

解答 解:(1)l2即2x-y+$\frac{1}{2}$=0,
∴l(xiāng)1與l2的距離d=$\frac{|a-\frac{1}{2}|}{\sqrt{5}}$=$\frac{\sqrt{5}}{2}$.
∴|2a-1|=5.
∵a>0,∴a=3.
(2)直線l1與l3的交點(diǎn),由:$\left\{\begin{array}{l}{2x-y+3=0}\\{x+y+3=0}\end{array}\right.$,解得:交點(diǎn)坐標(biāo)(-2,-1).
當(dāng)直線的斜率垂直時(shí),設(shè)所求的直線方程為:y+1=k(x+2),即:kx-y+2k-1=0.
點(diǎn)(1,3)到直線的距離為3,
可得:$\frac{|k-3+2k-1|}{\sqrt{1+{k}^{2}}}$=3,
解得k=$\frac{7}{24}$,
所求直線方程7x-24y-10=0.
當(dāng)直線的斜率不存在時(shí),x=-2,滿足題意.
所求直線方程為:x=-2或7x-24y-10=0.

點(diǎn)評(píng) 本題考查直線方程的求法,直線的交點(diǎn)坐標(biāo),平行線之間的距離的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知x2+4x+y2-6y+13=0,求$\frac{x-2y}{{x}^{2}+{y}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.用min{a,b}表示a,b中的較小者,記函數(shù)f(x)=min{-2x2,x2-2x-1}(x∈R),則f(x)的最大值為-$\frac{2}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x3+ax2+bx(a,b∈R)的圖象過點(diǎn)P(1,2)且在x=$\frac{1}{3}$處取得極值點(diǎn).
(1)求a、b的值
(2)求 函數(shù)f(x)的單調(diào)區(qū)間.
(3)求 函數(shù) f(x)在[-1,1]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知矩陣$A=[{\begin{array}{l}a&b\\ c&d\end{array}}]$,若矩陣A屬于特征值6的一個(gè)特征向量為$\overrightarrow{{α}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,屬于特征值1的一個(gè)特征向量為$\overrightarrow{{α}_{2}}$=$[\begin{array}{l}{3}\\{-2}\end{array}]$.求A的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x3-3x+4,求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)對(duì)一切x,y∈R都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(Ⅰ)求f(0)的值及f(x)的解析式;
(Ⅱ)已知a∈R,將滿足條件:當(dāng)x∈[0,2]時(shí),不等式f(x)+3≤2x+a恒成立的a的取值范圍為集A;當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-ax是單調(diào)函數(shù)的a取值范圍為集合B,求A∩(∁RB)(R為全集);
(Ⅲ)記F(x)=k[f(x)-x2+2]3,k∈R,且實(shí)數(shù)m,n滿足m+n>0,試比較F(m)+F(n)與0的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=x(1-x)n在x=$\frac{1}{3}$處取的極值,則n=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù)
x3456
y2.53.545
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?

查看答案和解析>>

同步練習(xí)冊(cè)答案