已知等比數(shù)列{an}的公比q=3,前3項的和S3=
13
3

(1)求等比數(shù)列{an}的通項公式;
(2)設bn=3nan,求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和,等比數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知得
a1(1-33)
1-3
=
13
3
,由此能求出an=
1
3
×3n-1
=3n-2
(2)由bn=3nan=n•3n-1,利用錯位相減法能求出數(shù)列{bn}的前n項和Tn
解答: 解:(1)∵等比數(shù)列{an}的公比q=3,前3項的和S3=
13
3
,
a1(1-33)
1-3
=
13
3
,解得a1=
1
3

∴an=
1
3
×3n-1
=3n-2
(2)∵bn=3nan=n•3n-1,
Tn=1•30+2•3+3•32+…+n•3n-1,①
3Tn=1•3+2•32+3•33+…+n•3n,②
①-②,得:-2Tn=1+3+32+…+3n-1-n•3n
=
1-3n
1-3
-n•3n

=(
1
2
-n
)•3n-
1
2
,
∴Tn=(
n
2
-
1
4
)•3n+
1
4
點評:本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,是中檔題,解題時要認真審題,注意錯位相減法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若“x∈[1,5]或x∈{x|x<-2或x>3}”是假命題,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,1),
b
=(0,-2),在下列條件下分別求k的值;
(1)
a
+
b
與k
a
-
b
平行;
(2)
a
+
b
與k
a
-
b
夾角為120°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線3x+4y+c=0與圓(x+1)2+y2=4相切,則c的值為( 。
A、0B、13或-7C、±2D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
b
滿足|
a
|=|
b
|=1,且(
a
+
b
)•
b
=
3
2
,則向量
a
,
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程:x3-4x2+4x-1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三角形ABC中,若a=
3
,cosA=
1
3
,則bc的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知acosB+bcosA=2ccosC,
(1)求角C的值;
(2)若△ABC的面積為S=
3
4
c,且a+b=2c,求邊長c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
-2x+1
的定義域為
(  )
A、(-∞,
1
2
]
B、(-∞,
1
2
C、(
1
2
,+∞
D、[
1
2
,+∞

查看答案和解析>>

同步練習冊答案