若向量
a
b
滿足|
a
|=|
b
|=1,且(
a
+
b
)•
b
=
3
2
,則向量
a
,
b
的夾角為
 
考點:數(shù)量積表示兩個向量的夾角
專題:平面向量及應(yīng)用
分析:將已知的等式展開,求出向量
a
,
b
的數(shù)量積,利用數(shù)量積公式求向量的夾角.
解答: 解:因為|
a
|=|
b
|=1,且(
a
+
b
)•
b
=
3
2
,
所以
a
b
+
b
2
=
3
2
,所以
a
b
=
1
2
,所以|
a
||
b
|cos<
a
,
b
>=
1
2
,
所以cos<
a
,
b
>=
1
2

所以向量
a
b
的夾角為
π
3
;
故答案為:
π
3
點評:本題考查了向量的數(shù)量積公式的運用;熟練運用數(shù)量積公式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前n項和Sn=3n+1-m,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(4,1)、B(0,4),在直線l:3x-y-1=0上找一點M,使|MA|-|MB|的值最大,求點M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x2+y2+ax-ay+2=0表示一個圓,則a的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(a,b),圓C1:x2+y2=r2,圓C2:(x-2)2+y2=1.命題p:點A在圓C1內(nèi)部,命題q:點A在圓C2內(nèi)部.若q是p的充分條件,則實數(shù)r的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比q=3,前3項的和S3=
13
3

(1)求等比數(shù)列{an}的通項公式;
(2)設(shè)bn=3nan,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出命題:
(1)設(shè)l,m是不同的直線,α是一個平面,若l⊥α,l∥m,則m⊥α;
(2)已知α,β表示兩個不同平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的充要條件;
(3)若空間中的一點P到三角形三個頂點的距離相等,則點P在該三角形所在平面內(nèi)的射影是該三角形的外心;
(4)a,b是兩條異面直線,P為空間一點,過P總可以作一個平面與a,b之一垂直,與另一個平行.
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1-x,x≥0
1
x
,x<0
,若f(a)=a,則實數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各等式中,正確的是( 。
A、(abc=ab+c
B、
lga
lgb
=lga-lgb
C、lga•lgb=lg(a+b)
D、
ac
bc
=ab-c

查看答案和解析>>

同步練習(xí)冊答案