【題目】ABC的三內(nèi)角A,B,C所對(duì)的邊分別為abc,若cosA=cosBb=,c=4M,N是邊AC上的兩個(gè)動(dòng)點(diǎn),且AM=2CN,則的最大值為______

【答案】

【解析】

b=結(jié)合正弦定理可得,sinB=sinA,然后再由二倍角公式及已知關(guān)系可求ABC為直角三角形,C=,然后求出,建立直角坐標(biāo)系,利用向量的數(shù)量積的坐標(biāo)表示及二次函數(shù)的性質(zhì)即可求解。

解:由b=可得,sinB=sinA,

cosA= cosB

sinAcosA=sinBcosB,

sin2A=sin2B

02A,2B

2A=2B2A+2B=π,

A=B,或A+B=

a≠b

A≠B

,

∴△ABC為直角三角形,C=,

b=c=4,

b==2

建立如下圖所示的直角坐標(biāo)系,

設(shè)N0t)則M

當(dāng)時(shí), 取得最大值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)橢圓 ,長(zhǎng)軸的右端點(diǎn)與拋物線 的焦點(diǎn)重合,且橢圓的離心率是

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)作直線交拋物線, 兩點(diǎn),過(guò)且與直線垂直的直線交橢圓于另一點(diǎn),求面積的最小值,以及取到最小值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一場(chǎng)專家報(bào)告會(huì),張老師帶甲,乙,丙,丁四位同學(xué)參加,其中有一個(gè)特殊位置可與專家近距離交流,張老師看出每個(gè)同學(xué)都想去坐這個(gè)位置,因此給出一個(gè)問(wèn)題,誰(shuí)能猜對(duì),誰(shuí)去坐這個(gè)位置.問(wèn)題如下:某班10位同學(xué)參加一次全年級(jí)的高二數(shù)學(xué)競(jìng)賽,最后一道題只有6名同學(xué),,,嘗試做了,并且這6人中只有1人答對(duì)了.聽(tīng)完后,四個(gè)同學(xué)給出猜測(cè)如下:甲猜:答對(duì)了;乙猜:不可能答對(duì);丙猜:,當(dāng)中必有1人答對(duì)了;丁猜:,,都不可能答對(duì),在他們回答完后,張老師說(shuō)四人中只有1人猜對(duì),則張老師把特殊位置給了__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是雙曲線:的右焦點(diǎn),左支上的點(diǎn),已知,則周長(zhǎng)的最小值是_______

【答案】

【解析】

設(shè)左焦點(diǎn)為,利用雙曲線的定義,得到當(dāng)三點(diǎn)共線時(shí),三角形的周長(zhǎng)取得最小值,并求得最小的周長(zhǎng).

設(shè)左焦點(diǎn)為,根據(jù)雙曲線的定義可知,所以三角形的周長(zhǎng)為,當(dāng)三點(diǎn)共線時(shí),取得最小值,三角形的周長(zhǎng)取得最小值. ,故三角形周長(zhǎng)的最小值為.

【點(diǎn)睛】

本小題主要考查雙曲線的定義,考查三角形周長(zhǎng)最小值的求法,屬于中檔題.

型】填空
結(jié)束】
16

【題目】已知分別是雙曲線的左、右焦點(diǎn),過(guò)點(diǎn)作垂直與軸的直線交雙曲線于,兩點(diǎn),若為銳角三角形,則雙曲線的離心率的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,為直角,,相交于點(diǎn),.

1)試用表示向量;

2)在線段上取一點(diǎn),在線段上取一點(diǎn),使得直線過(guò),設(shè),,求的值;

3)若,過(guò)作線段,使得的中點(diǎn),且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線與橢圓有相同的焦點(diǎn).

求雙曲線的方程;

為中點(diǎn)作雙曲線的一條弦,求弦所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年非洲豬瘟在東北三省出現(xiàn),為了進(jìn)行防控,某地生物醫(yī)藥公司派出技術(shù)人員對(duì)當(dāng)?shù)匾火B(yǎng)豬場(chǎng)提供技術(shù)服務(wù),收費(fèi)標(biāo)準(zhǔn)是:每天公司收取養(yǎng)豬場(chǎng)技術(shù)服務(wù)費(fèi)120元,當(dāng)天若需要用藥的豬不超過(guò)45頭,不另外收費(fèi),若需要用藥的豬超過(guò)45頭,超過(guò)部分每頭收取藥費(fèi)8元.

(1)設(shè)醫(yī)藥公司日收費(fèi)為(單位:元),每天需要用藥的豬的數(shù)量為(單位:頭),,試寫(xiě)出醫(yī)藥公司日收取的費(fèi)用關(guān)于的函數(shù)關(guān)系式;

(2)若該醫(yī)藥公司從10月1日起對(duì)該養(yǎng)豬場(chǎng)提供技術(shù)服務(wù),10月31日該養(yǎng)豬場(chǎng)對(duì)其中一個(gè)豬舍9月份和10月份豬的發(fā)病數(shù)量進(jìn)行了統(tǒng)計(jì),得到如下列聯(lián)表.

9月份

10月份

合計(jì)

未發(fā)病

40

85

125

發(fā)病

65

20

85

合計(jì)

105

105

210

根據(jù)以上列聯(lián)表,判斷是否有99.9%的把握認(rèn)為豬未發(fā)病與醫(yī)藥公司提供技術(shù)服務(wù)有關(guān)?

附:,其中.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義個(gè)數(shù)倒均值.

1)若數(shù)列的前項(xiàng),倒均值. 的通項(xiàng)公式

2)在(1)的條件下,令,試研究數(shù)列的單調(diào)性,并給出證明.

3)在(2)的條件下,設(shè)函數(shù),對(duì)于數(shù)列,是否存在實(shí)數(shù),使得當(dāng)時(shí),對(duì)任意恒成立?若存在,求出在最小的實(shí)數(shù),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐(如圖1)的平面展開(kāi)圖(如圖2)中,四邊形為邊長(zhǎng)為的正方形,,均為正三角形,在三棱錐中.

1)求證:平面平面;

2)若點(diǎn)在棱上,滿足,,點(diǎn)在棱上,且,求得取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案