【題目】近年來,隨著我國汽車消費水平的提高,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場對2017年成交的二手車交易前的使用時間(以下簡稱“使用時間”)進行統(tǒng)計,得到頻率分布直方圖如圖1.
附注:①對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,;
②參考數(shù)據(jù):,,,,.
(Ⅰ)記“在2017年成交的二手車中隨機選取一輛,該車的使用年限在”為事件,試估計的概率;
(Ⅱ)根據(jù)該汽車交易市場的歷史資料,得到散點圖如圖2,其中(單位:年)表示二手車的使用時間,(單位:萬元)表示相應(yīng)的二手車的平均交易價格.由散點圖看出,可采用作為二手車平均交易價格關(guān)于其使用年限的回歸方程,相關(guān)數(shù)據(jù)如下表(表中,):
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根據(jù)回歸方程類型及表中數(shù)據(jù),建立關(guān)于的回歸方程;
②該汽車交易市場對使用8年以內(nèi)(含8年)的二手車收取成交價格的傭金,對使用時間8年以上(不含8年)的二手車收取成交價格的傭金.在圖1對使用時間的分組中,以各組的區(qū)間中點值代表該組的各個值.若以2017年的數(shù)據(jù)作為決策依據(jù),計算該汽車交易市場對成交的每輛車收取的平均傭金.
【答案】(1)(2)①,②萬元
【解析】
(1)由頻率分布直方圖求得該汽車交易市場2017年成交的二手車使用時間在與的頻率,作和估計的概率;
(2)①由得,,即關(guān)于的線性回歸方程為.分別求得與的值,則關(guān)于的線性回歸方程可求,進一步得到關(guān)于的回歸方程;
②根據(jù)①中求出的回歸方程和圖1,對成交的二手車在不同區(qū)間逐一預(yù)測,即可求得該汽車交易市場對于成交的每輛車可獲得的平均傭金.
解:(1)由題得,二手車使用時間在的頻率為,
在的頻率為,
∴;
(2)①由題得,,即關(guān)于的線性回歸方程為.
∵,
,
∴關(guān)于的線性回歸方程為,即關(guān)于的回歸方程為;
②根據(jù)①中的回歸方程和圖1,對成交的二手車可預(yù)測:
使用時間在的平均成交價格為,對應(yīng)的頻率為0.2;
使用時間在的平均成交價格為,對應(yīng)的頻率為0.36;
使用時間在的平均成交價格為,對應(yīng)的頻率為0.28;
使用時間在平均成交價格為,對應(yīng)的頻率為0.12;
使用時間在的平均成交價格為,對應(yīng)的頻率為0.04.
∴該汽車交易市場對于成交的每輛車可獲得的平均傭金為萬元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,網(wǎng)上購物已經(jīng)成為人們消費的一種習(xí)慣.假設(shè)某淘寶店的一種裝飾品每月的銷售量 (單位:千件)與銷售價格 (單位:元/件)之間滿足如下的關(guān)系式:為常數(shù).已知銷售價格為元/件時,每月可售出千件.
(1)求實數(shù)的值;
(2)假設(shè)該淘寶店員工工資、辦公等所有的成本折合為每件2元(只考慮銷售出的裝飾品件數(shù)),試確定銷售價格的值,使該店每月銷售裝飾品所獲得的利潤最大.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學(xué)生是否愛好某項運動,得到如下的列聯(lián)表:
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
則下列說法正確的是( )
A.有以上的把握認為“愛好該項運動與性別無關(guān)”
B.有以上的把握認為“愛好該項運動與性別無關(guān)”
C.在犯錯誤的概率不超過的前提下,認為“愛好該項運動與性別有關(guān)”
D.在犯錯誤的概率不超過的前提下,認為“愛好該項運動與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠每年定期對職工進行培訓(xùn)以提高工人的生產(chǎn)能力(生產(chǎn)能力是指一天加工的零件數(shù)).現(xiàn)有、兩類培訓(xùn),為了比較哪類培訓(xùn)更有利于提高工人的生產(chǎn)能力,工廠決定從同一車間隨機抽取100名工人平均分成兩個小組分別參加這兩類培訓(xùn).培訓(xùn)后測試各組工人的生產(chǎn)能力得到如下頻率分布直方圖.
(1)記表示事件“參加類培訓(xùn)工人的生產(chǎn)能力不低于130件”,估計事件的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為工人的生產(chǎn)能力與培訓(xùn)類有關(guān):
生產(chǎn)能力件 | 生產(chǎn)能力件 | 總計 | |
類培訓(xùn) | 50 | ||
類培訓(xùn) | 50 | ||
總計 | 100 |
(3)根據(jù)頻率分布直方圖,判斷哪類培訓(xùn)更有利于提高工人的生產(chǎn)能力,請說明理由.
參考數(shù)據(jù)
0.15 | 0.10 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓錐的軸截面為等腰為底面圓周上一點。
(1)若的中點為,求證: 平面;
(2)如果,求此圓錐的體積;
(3)若二面角大小為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某課題小組共10人,已知該小組外出參加交流活動次數(shù)為1,2,3的人數(shù)分別為3,3, 4,現(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.
(1)記“選出2人外出參加交流活動次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;
(2)設(shè)X為選出2人參加交流活動次數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程選講
在平面直角坐標系中,以原點為極點,以軸非負半軸為極軸建立極坐標系, 已知曲線的極坐標方程為,直線的極坐標方程為.
(Ⅰ)寫出曲線和直線的直角坐標方程;
(Ⅱ)設(shè)直線過點與曲線交于不同兩點,的中點為,與的交點為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點分別為,,下頂點為,為坐標原點,點到直線的距離為,為等腰直角三角形.
(1)求橢圓的標準方程;
(2)直線與橢圓交于,兩點,若直線與直線的斜率之和為,證明:直線恒過定點,并求出該定點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com