【題目】近年來(lái),網(wǎng)上購(gòu)物已經(jīng)成為人們消費(fèi)的一種習(xí)慣.假設(shè)某淘寶店的一種裝飾品每月的銷售量 (單位:千件)與銷售價(jià)格 (單位:元/件)之間滿足如下的關(guān)系式:為常數(shù).已知銷售價(jià)格為元/件時(shí),每月可售出千件.

(1)求實(shí)數(shù)的值;

(2)假設(shè)該淘寶店員工工資、辦公等所有的成本折合為每件2元(只考慮銷售出的裝飾品件數(shù)),試確定銷售價(jià)格的值,使該店每月銷售裝飾品所獲得的利潤(rùn)最大.(結(jié)果保留一位小數(shù))

【答案】(1);(2) .

【解析】

(1)將“銷售價(jià)格為元/件時(shí),每月可售出千件”帶入關(guān)系式中即可得出結(jié)果;

(2)首先可通過(guò)題意得出每月銷售裝飾品所獲得的利潤(rùn),然后通過(guò)化簡(jiǎn)并利用導(dǎo)數(shù)求得最大值,即可得出結(jié)果。

(1)由題意可知,當(dāng)銷售價(jià)格為元/件時(shí),每月可售出千件,

所以,解得。

(2)設(shè)利潤(rùn)為,則,帶入可得:

,

化簡(jiǎn)可得,

函數(shù)的導(dǎo)函數(shù),

當(dāng)時(shí),,函數(shù)單調(diào)遞增;

當(dāng)時(shí),,函數(shù)單調(diào)遞減;

當(dāng)時(shí),,函數(shù)取極大值,也是最大值,

所以當(dāng),函數(shù)取最大值,即銷售價(jià)格約為每件元時(shí),該店每月銷售裝飾品所獲得的利潤(rùn)最大。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是平面內(nèi)一條長(zhǎng)度為4的線段,P是平面內(nèi)一動(dòng)點(diǎn),P可以與A,B重合.當(dāng)PA,B不重合時(shí),直線PAPB的斜率之積為,

1)建立適當(dāng)?shù)淖鴺?biāo)系,求動(dòng)點(diǎn)P的軌跡方程;

2)一個(gè)矩形的四條邊與(1)中的軌跡M均相切,求該矩形面積的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A過(guò)點(diǎn),并且與圓相外切,設(shè)動(dòng)圓的圓心的軌跡為.

1)求曲線的方程;

2)過(guò)動(dòng)點(diǎn)作直線與曲線交于兩點(diǎn),當(dāng)的中點(diǎn)時(shí),求的值;

3)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),設(shè)直線,點(diǎn),直線于點(diǎn),求證:直線經(jīng)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且拋物線的焦點(diǎn)恰好是橢圓的一個(gè)焦點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)點(diǎn)作直線與橢圓交于,兩點(diǎn)點(diǎn)滿足為坐標(biāo)原點(diǎn)),求四邊形面積的最大值并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列滿足

(1)求的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為分別為其左、右焦點(diǎn),為橢圓上一點(diǎn),且的周長(zhǎng)為.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作關(guān)于軸對(duì)稱的兩條不同的直線,若直線交橢圓于一點(diǎn),直線交橢圓于一點(diǎn),證明:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,

1)當(dāng)時(shí),試比較的大小關(guān)系;

2)猜想的大小關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,過(guò)的直線交橢圓于兩點(diǎn),若橢圓的離心率為,的周長(zhǎng)為16.

(1)求橢圓的方程;

(2)設(shè)不經(jīng)過(guò)橢圓的中心而平行于弦的直線交橢圓于點(diǎn),,設(shè)弦,的中點(diǎn)分別為.證明:,三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),隨著我國(guó)汽車消費(fèi)水平的提高,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場(chǎng)對(duì)2017年成交的二手車交易前的使用時(shí)間(以下簡(jiǎn)稱“使用時(shí)間”)進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如圖1.

附注:①對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,;

②參考數(shù)據(jù):,,

(Ⅰ)記“在2017年成交的二手車中隨機(jī)選取一輛,該車的使用年限在”為事件,試估計(jì)的概率;

(Ⅱ)根據(jù)該汽車交易市場(chǎng)的歷史資料,得到散點(diǎn)圖如圖2,其中(單位:年)表示二手車的使用時(shí)間,(單位:萬(wàn)元)表示相應(yīng)的二手車的平均交易價(jià)格.由散點(diǎn)圖看出,可采用作為二手車平均交易價(jià)格關(guān)于其使用年限的回歸方程,相關(guān)數(shù)據(jù)如下表(表中,):

5.5

8.7

1.9

301.4

79.75

385

①根據(jù)回歸方程類型及表中數(shù)據(jù),建立關(guān)于的回歸方程;

②該汽車交易市場(chǎng)對(duì)使用8年以內(nèi)(含8年)的二手車收取成交價(jià)格的傭金,對(duì)使用時(shí)間8年以上(不含8年)的二手車收取成交價(jià)格的傭金.在圖1對(duì)使用時(shí)間的分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值.若以2017年的數(shù)據(jù)作為決策依據(jù),計(jì)算該汽車交易市場(chǎng)對(duì)成交的每輛車收取的平均傭金.

查看答案和解析>>

同步練習(xí)冊(cè)答案