19.求半徑為1,圓心在x軸上,且與直線3x+4y-7=0相切的圓的方程.

分析 設(shè)圓心為C(a,0),根據(jù)點(diǎn)C到直線3x+4y-7=0的距離等于1,求得a的值,可得要求的圓的標(biāo)準(zhǔn)方程.

解答 解:設(shè)圓心為C(a,0),則點(diǎn)C到直線3x+4y-7=0的距離等于1,
即 $\frac{|3a-7|}{5}$=1,求得a=4,或a=$\frac{2}{3}$,
故要求的圓的方程為(x-4)2+y2=1,或${(x-\frac{2}{3})}^{2}$+y2=1.

點(diǎn)評(píng) 本題主要考查圓的標(biāo)準(zhǔn)方程,直線和圓的位置關(guān)系的應(yīng)用,點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)在等差數(shù)列{an}中,a2+a6+a10=1,求a4+a8的值;
(2)在等差數(shù)列{an}中,a3+a7=37,求a2+a4+a6+a8的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知sin(α+β)=-$\frac{3}{5}$,cos(α-β)=-$\frac{4}{5}$,$\frac{π}{2}$<α-β<π,$\frac{3π}{2}$<α+β<2π,求2β的值.(提示:2β=(α+β)-(α-β))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.化簡(jiǎn):$\frac{sin(π-α)cos(2π+α)sin(π+α)tan(2π-α)}{tan(π+α)sin(2π-α)cos(π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)k是給定的正整數(shù),對(duì)于滿足條件a1-a${\;}_{k+1}^{2}$=2的所有無(wú)窮等差數(shù)列{an},ak+1+ak+2+…+a2k+1的最大值$\frac{k+1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(3,0),則$\overrightarrow{a}$在$\overrightarrow$方向上投影為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.點(diǎn)M在圓心為C1的方程x2+y2+6x-2y+1=0上,點(diǎn)N在圓心為C2的方程x2+y2+2x+4y+1=0上,求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若關(guān)于x的不等式0≤ax2+c≤6(a>0)的解集為[m,m+1]∪[m+3,m+4],則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在某學(xué)校一次考試的語(yǔ)文與歷史成績(jī)中,隨機(jī)抽取了25位考生的成績(jī)進(jìn)行分析,25位考生的語(yǔ)文成績(jī)已經(jīng)統(tǒng)計(jì)在莖葉圖中,歷史成績(jī)?nèi)缦拢?br />(Ⅰ)請(qǐng)根據(jù)數(shù)據(jù)在莖葉圖中完成歷史成績(jī)統(tǒng)計(jì);
(Ⅱ)請(qǐng)根據(jù)數(shù)據(jù)完成語(yǔ)文成績(jī)的頻數(shù)分布表及語(yǔ)文成績(jī)的頻率分布直方圖;

語(yǔ)文成績(jī)的頻數(shù)分布表:
語(yǔ)文成績(jī)分組[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)[110,120]
頻數(shù)
(Ⅲ)設(shè)上述樣本中第i位考生的語(yǔ)文、歷史成績(jī)分別為xi,yi(i=1,2,…,25).通過(guò)對(duì)樣本數(shù)據(jù)進(jìn)行初步處理發(fā)現(xiàn):語(yǔ)文、歷史成績(jī)具有線性相關(guān)關(guān)系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
①求y關(guān)于x的線性回歸方程;
②并據(jù)此預(yù)測(cè),當(dāng)某考生的語(yǔ)文成績(jī)?yōu)?00分時(shí),該生歷史成績(jī).(精確到0.1分)
附:回歸直線方程的斜率和截距的最小二乘法估計(jì)公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-\overline{n}x•\overline{y}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案