A. | 5 | B. | 16 | C. | 17 | D. | 18 |
分析 由實數(shù)x,y滿足$\left\{{\begin{array}{l}{x+y≤3}\\{y-x+1≤0}\\{y≥0}\end{array}}\right.$,作出可行域,利用角點法能求出z=x=2y的最小值.
解答 解:由實數(shù)x,y滿足$\left\{{\begin{array}{l}{x+y≤3}\\{y-x+1≤0}\\{y≥0}\end{array}}\right.$,作出可行域如圖:
∵z=x+2y,解方程組$\left\{\begin{array}{l}{x+y=3}\\{y-x+1=0}\end{array}\right.$,得A(2,1),∴zA=2+2×1=4,
∵B(1,0),∴zB=1+2×0=1;
∴z=x+2y的最小值是0.
2x+2y的最大最小值之和:24+20=17.
故選:C.
點評 在解決線性規(guī)劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點的坐標⇒③將坐標逐一代入目標函數(shù)⇒④驗證,求出最優(yōu)解.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{1-\sqrt{5}}{4}$,0) | B. | ($\frac{1-\sqrt{5}}{4}$,$\frac{\sqrt{5}-2}{2}$) | C. | [$\frac{9-9\sqrt{5}}{32}$,$\frac{\sqrt{5}-2}{2}$) | D. | [$\frac{9-9\sqrt{5}}{32}$,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
從M到N用的步數(shù) | 2 | 3 | 4 |
獎勵金額(元) | 100 | 10 | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com