已知等差數(shù)列滿足:的前n項和為
(1)求;
(2)已知數(shù)列的第n項為,若成等差數(shù)列,且,設(shè)數(shù)列的前項和.求數(shù)列的前項和

(1) ,; (2).

解析試題分析:(1)由根據(jù)等差中項的性質(zhì)求得,結(jié)合可以求得,再將 代入等差數(shù)列的通項公式化簡整理即可,然后由等差數(shù)列的前項和公式求得;(2)根據(jù)等差數(shù)列的等差中項的性質(zhì),結(jié)合可以得到,由迭代法求數(shù)列的通項公式,注意討論是否符合此通項公式,觀察式子特點,利用裂項相消的原則求數(shù)列的前項和.
試題解析:(1)設(shè)等差數(shù)列的公差為,
因為,,所以.            2分
,
所以;                        4分
.    6分
(2)由(1)知,
因為成等差數(shù)列,
所以 ,即,
所以 .   8分


又因為滿足上式,所以     10分
所以
.12分
考點:1.等差數(shù)列及其性質(zhì);2.等差數(shù)列的前項和;3.數(shù)列的遞推公式;4.數(shù)列的求和

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,,,數(shù)列中,,且點在直線上.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列為遞增數(shù)列,且,.
(Ⅰ)求
(Ⅱ)令,不等式的解集為,求所有的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足,.
(I)求數(shù)列的通項公式;
(II)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如果項數(shù)均為的兩個數(shù)列滿足且集合,則稱數(shù)列是一對“項相關(guān)數(shù)列”.
(Ⅰ)設(shè)是一對“4項相關(guān)數(shù)列”,求的值,并寫出一對“項相
關(guān)數(shù)列”;
(Ⅱ)是否存在“項相關(guān)數(shù)列”?若存在,試寫出一對;若不存在,請說明理由;
(Ⅲ)對于確定的,若存在“項相關(guān)數(shù)列”,試證明符合條件的“項相關(guān)數(shù)列”有偶數(shù)對.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項為正數(shù)的等差數(shù)列滿足,,且).
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列及其前項和滿足: (,).
(1)證明:設(shè)是等差數(shù)列;
(2)求
(3)判斷數(shù)列是否存在最大或最小項,若有則求出來,若沒有請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)公差不為0的等差數(shù)列{an}的首項為1,且a2,a5,a14構(gòu)成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足+…+=1-,n∈N*,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為等差數(shù)列,是等差數(shù)列的前項和,已知,.
(1)求數(shù)列的通項公式;(2)為數(shù)列的前項和,求.

查看答案和解析>>

同步練習(xí)冊答案