設(shè)函數(shù)f(x)=
1-|x-1|,x∈(-∞,2)
1
2
f(x-2),x∈[2,+∞)
,則函數(shù)xf(x)-1零點(diǎn)的個(gè)數(shù)為
 
考點(diǎn):函數(shù)與方程的綜合運(yùn)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由F(x)=0得f(x)=
1
x
,然后分別作出函數(shù)f(x)與y=
1
x
的圖象,利用數(shù)形結(jié)合即可得到函數(shù)零點(diǎn)的個(gè)數(shù).
解答: 解:xf(x)-1=0,可得f(x)-
1
x
=0,
F(x)=f(x)-
1
x
=0得f(x)=
1
x
,然后分別作出函數(shù)f(x)與y=g(x)=
1
x
的圖象如圖:
∵當(dāng)x≥2時(shí),f(x)=
1
2
f(x-2),
∴f(1)=1,g(1)=1,
f(1)=1,g(1)=1,
f(3)=
1
2
f(1)=
1
2
,g(3)=
1
3
,
f(5)=
1
2
f(3)=
1
4
,g(5)=
1
5

f(7)=
1
2
f(5)=
1
8
,g(7)=
1
7

∴當(dāng)x>7時(shí),f(x)<
1
x

由圖象可知兩個(gè)圖象的交點(diǎn)個(gè)數(shù)為6個(gè).
故答案為:6.
點(diǎn)評:本題主要考查方程和函數(shù)之間的關(guān)系,根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)的判斷,轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問題是解決本題的關(guān)鍵,利用數(shù)形結(jié)合是解決本題的基本思想.本題難度較大,綜合性較強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)fA(x)的定義域?yàn)锳=[a,b),且fA(x)=(
x
a
+
b
x
-1)2-
2b
a
+1,其中a、b為任意正實(shí)數(shù),且a<b.
(1)當(dāng)A=[4,7)時(shí),研究fA(x)的單調(diào)性(不必證明);
(2)寫出fA(x)的單調(diào)區(qū)間(不必證明),并求函數(shù)fA(x)的最小值、最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱長為1的正方體ABCD-A1B1C1D1的頂點(diǎn)都在球面上,則AC1的長是
 
,球的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點(diǎn)在坐標(biāo)軸上的雙曲線E過點(diǎn)P(-3
2
,4),它的漸近線方程為y=±
4
3
x

(1)求雙曲線E的標(biāo)準(zhǔn)方程;
(2)若直線y=x+1與E交于A,B兩點(diǎn),求|AB|.(要求結(jié)果化到最簡)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)=ax2+bx+c(a≠0),滿足f(x+2)-f(x)=16x且f(0)=2.
(1)求函數(shù)f(x)的解析式;
(2)若存在x∈[1,3],使不等式f(x)>2x+m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)的和為Sn,且對任意正整數(shù)n,都有a2a8=2a3a6,S5=-62,則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)3+i,-4-2i,-5i,6,
5
2
-3i.在復(fù)平面內(nèi)畫出這些復(fù)數(shù)與它們的共軛復(fù)數(shù)所對應(yīng)的向量,并求出它們的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是等比數(shù)列,a1=C
 
3m
2m+3
•A
 
1
m-2
,公比q是(x+
1
4x2
4的展開式中的第二項(xiàng)
(1)用n、x表示通項(xiàng)an與前n項(xiàng)和Sn
(2)當(dāng)x=1時(shí),求An=C
 
1
n
S1+C
 
2
n
S2+…+C
 
n
n
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公比大于1的等比數(shù)列,Tn是{an}的前n項(xiàng)和,對任意n∈N*有an+1=Tn+
3
2
an+
1
2
,數(shù)列{bn}滿足bn=
1
n
(log3a1+log3a2+…+log3an+log3t)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若{bn}為等差數(shù)列,求t的值及數(shù)列{
1
bn+1bn+3
}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案