【題目】對(duì)于函數(shù),如果存在實(shí)數(shù),且不同時(shí)成立),使得對(duì)恒成立,則稱函數(shù)映像函數(shù)”.

1)判斷函數(shù)是否是映像函數(shù),如果是,請(qǐng)求出相應(yīng)的的值,若不是,請(qǐng)說(shuō)明理由;

2)已知函數(shù)是定義在上的映像函數(shù),且當(dāng)時(shí),.求函數(shù))的反函數(shù);

3)在(2)的條件下,試構(gòu)造一個(gè)數(shù)列,使得當(dāng)時(shí),,并求時(shí),函數(shù)的解析式,及的值域.

【答案】(1)是“映像函數(shù)”,;(2;(3),值域

【解析】

1)直接由題意列關(guān)于ab的方程組,求解得答案;

2)由題意可得f0)=f3),f1)=f7),而當(dāng)x[0,1)時(shí),fx)=2x,則x[3,7)時(shí),設(shè)fx)=2sx+t,可得,求得s,t的值,則函數(shù)解析式可求,把x用含有y的代數(shù)式表示,把x,y互換可得yfx)(x[3,7))的反函數(shù);

3)由(2)可知,構(gòu)造數(shù)列{an},滿足a10,an+12an+1,可得數(shù)列{an+1}是以1為首項(xiàng),以2為公比的等比數(shù)列,由此求得.當(dāng)x[an,an+1)=[2n11,2n1),令,解得s21nt21n1,可得x[an,an+1)(nN*)時(shí),函數(shù)yfx)的解析式為fx,并求得x[0,+∞)時(shí),函數(shù)fx)的值域?yàn)?/span>[12).

1)對(duì)于

,則,

恒成立,∴,∵不同時(shí)成立,∴,

是“映像函數(shù)”

2)當(dāng)時(shí),,從而,∵函數(shù)是定義在上的“映像函數(shù)”,

,令,則,∴

),由得,,此時(shí)

∴當(dāng)時(shí),函數(shù)的反函數(shù)是;

3)∵時(shí),,

∴構(gòu)造數(shù)列,,且,于是,

是以為首項(xiàng),為公比的等比數(shù)列,∴,

∴當(dāng),即時(shí),

對(duì)于函數(shù),∵,令,則

,

∴當(dāng)時(shí),,

函數(shù)上單調(diào)遞增,∴

,

即函數(shù)的值域?yàn)?/span>.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201911日新修訂的個(gè)稅法正式實(shí)施,規(guī)定:公民全月工資、薪金所得不超過(guò)5000元的部分不必納稅,超過(guò)5000元的部分為全月應(yīng)納稅所得額.此項(xiàng)稅款按下表分段累計(jì)計(jì)算(預(yù)扣):

全月應(yīng)繳納所得額

稅率

不超過(guò)3000元的部分

超過(guò)3000元至12000元的部分

超過(guò)12000元至25000元的部分

國(guó)家在實(shí)施新個(gè)稅時(shí),考慮到納稅人的實(shí)際情況,實(shí)施了《個(gè)人所得稅稅前專項(xiàng)附加扣稅暫行辦法》,具體如下表:

項(xiàng)目

每月稅前抵扣金額(元)

說(shuō)明

子女教育

1000

一年按12月計(jì)算,可扣12000

繼續(xù)教育

400

一年可扣除4800元,若是進(jìn)行技能職業(yè)教育或者專業(yè)技術(shù)職業(yè)資格教育一年可扣除3600

大病醫(yī)療

5000

一年最高抵扣金額為60000

住房貸款利息

1000

一年可扣除12000元,若夫妻雙方在同一城市工作,可以選擇一方來(lái)扣除

住房租金

1500/1000/800

扣除金額需要根據(jù)城市而定

贍養(yǎng)老人

2000

一年可扣除24000元,若不是獨(dú)生子女,子女平均扣除.贍養(yǎng)老人年齡需要在60周歲及以上

老李本人為獨(dú)生子女,家里有70歲的老人需要贍養(yǎng),有一個(gè)女兒正讀高三,他每月還需繳納住房貸款2734.201911月老李工資,薪金所得為20000元,按照《個(gè)人所得稅稅前專項(xiàng)附加扣稅暫行辦法》,則老李應(yīng)繳納稅款(預(yù)扣)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且

)求數(shù)列的通項(xiàng)公式;

)若數(shù)列滿足,求數(shù)列的通項(xiàng)公式;

)在()的條件下,設(shè),問(wèn)是否存在實(shí)數(shù)使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,橢圓)的短軸長(zhǎng)等于圓半徑的倍,的離心率為

1)求的方程;

2)若直線交于兩點(diǎn),且與圓相切,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的值域是,有下列結(jié)論:①當(dāng)時(shí),; ②當(dāng)時(shí),;③當(dāng)時(shí), ④當(dāng)時(shí),.其中結(jié)論正確的所有的序號(hào)是( )

A.①②B.③④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)的圖像與函數(shù)的圖像關(guān)于直線對(duì)稱.

1)求函數(shù)的解析式;

2)若函數(shù)在區(qū)間上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍;

3)設(shè)函數(shù),試用列舉法表示集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為提高市場(chǎng)銷售業(yè)績(jī),設(shè)計(jì)了一套產(chǎn)品促銷方案,并在某地區(qū)部分營(yíng)銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn).運(yùn)作一年后,對(duì)采取促銷沒(méi)有采取促銷的營(yíng)銷網(wǎng)點(diǎn)各選了50個(gè),對(duì)比上一年度的銷售情況,分別統(tǒng)計(jì)了它們的年銷售總額,并按年銷售總額增長(zhǎng)的百分點(diǎn)分成5組:,,,,分別統(tǒng)計(jì)后制成如圖所示的頻率分布直方圖,并規(guī)定年銷售總額增長(zhǎng)10個(gè)百分點(diǎn)及以上的營(yíng)銷網(wǎng)點(diǎn)為精英店”.

采用促銷的銷售網(wǎng)點(diǎn)

不采用促銷的銷售網(wǎng)點(diǎn)

1)請(qǐng)根據(jù)題中信息填充下面的列聯(lián)表,并判斷是否有的把握認(rèn)為精英店與采促銷活動(dòng)有關(guān);

采用促銷

無(wú)促銷

合計(jì)

精英店

非精英店

合計(jì)

50

50

100

2)某精英店為了創(chuàng)造更大的利潤(rùn),通過(guò)分析上一年度的售價(jià)(單位:元)和日銷量(單位:件)()的一組數(shù)據(jù)后決定選擇作為回歸模型進(jìn)行擬合.具體數(shù)據(jù)如下表,表中的

45.8

395.5

2413.5

4.6

21.6

①根據(jù)上表數(shù)據(jù)計(jì)算,的值;

②已知該公司產(chǎn)品的成本為10/件,促銷費(fèi)用平均5/件,根據(jù)所求出的回歸模型,分析售價(jià)定為多少時(shí)日利潤(rùn)可以達(dá)到最大.

附①:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附②:對(duì)應(yīng)一組數(shù)據(jù),

其回歸直線的斜率和截距的最小二乘法估計(jì)分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面平面,.

1)求證:;

2)求二面角的余弦值;

3)在棱上是否存在點(diǎn),使得平面?若存在,求的值?若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分形幾何學(xué)是數(shù)學(xué)家伯努瓦曼德?tīng)柌剂_在20世紀(jì)70年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科.它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖1所示的分形規(guī)律可得如圖2所示的一個(gè)樹(shù)形圖:

易知第三行有白圈5個(gè),黑圈4個(gè).我們采用坐標(biāo)來(lái)表示各行中的白圈、黑圈的個(gè)數(shù).比如第一行記為,第二行記為,第三行記為.照此規(guī)律,第行中的白圈、黑圈的坐標(biāo),則________

查看答案和解析>>

同步練習(xí)冊(cè)答案