15.體育課上,李老師對(duì)初三 (1)班50名學(xué)生進(jìn)行跳繩測(cè)試,現(xiàn)測(cè)得他們的成績(jī)(單位:個(gè))全部介于20與70之間,將這些成績(jī)數(shù)據(jù)進(jìn)行分組(第一組:(20,30],第二組:(30,40],…,第五組:(60,70]),并繪制成如圖所示的頻率分布直方圖.
(1)求成績(jī)?cè)诘谒慕M的人數(shù)和這50名同學(xué)跳繩成績(jī)的中位數(shù);
(2)從成績(jī)?cè)诘谝唤M和第五組的同學(xué)中隨機(jī)取出 2名同學(xué)進(jìn)行搭檔,求至少有一名同學(xué)在第一組的概率.

分析 (1)根據(jù)頻率分步直方圖即可求出成績(jī)?cè)诘谒慕M的人數(shù),估計(jì)中位數(shù)即可.
(2)根據(jù)頻率分步直方圖做出要用的各段的人數(shù),設(shè)出各段上的元素,用列舉法寫出所有的事件和滿足條件的事件,根據(jù)概率公式做出概率.

解答 解:(1)第四組的人數(shù)為[1-(0.004+0.008+0.016+0.04)×10]×50=16,
中位數(shù)為40+[0.5-(0.004+0.016)×10]÷0.04=47.5.
(2)據(jù)題意,第一組有0.004×10×50=2人,第五組有0.008×10×50=4人,
記第一組成績(jī)?yōu)锳,B,第五組成績(jī)?yōu)閍,b,c,d,
則可能構(gòu)成的基本事件有(A,a),(A,b),(A,c),(A,d),(B,a),(B,b),(B,c),(B,d),(A,B),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共15種,
其中至少有一名是第一組的有(A,a),(A,b),(A,c),(A,d),(B,a),(B,b),(B,c),(B,d),(A,B),共9種,
∴概率$P=\frac{9}{15}=\frac{3}{5}$.

點(diǎn)評(píng) 本題是一個(gè)典型的古典概型問(wèn)題,本題可以列舉出試驗(yàn)發(fā)生包含的事件和滿足條件的事件,應(yīng)用列舉法來(lái)解題是這一部分的精髓.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知復(fù)數(shù)z滿足zi=1-i,(i為虛數(shù)單位),則|z|=( 。
A.1B.2C.3D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在等比數(shù)列{an}中,a3,a15是方程x2-6x+8=0的根,則$\frac{{{a_1}{a_{17}}}}{a_9}$的值為( 。
A.$2\sqrt{2}$B.4C.$±2\sqrt{2}$D.±4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,焦距為2c(c>0).若拋物線y2=4cx與該雙曲線在第一象限的交點(diǎn)為M,當(dāng)|MF1|=4c時(shí),該雙曲線的離心率為1+$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成如下六段:[40,50),[50,60),…,[90,100]后得到如圖的頻率分布直方圖.
(1)若該校高一年級(jí)共有學(xué)生640名,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù).
(2)在抽取的40名學(xué)生中,若從數(shù)學(xué)成績(jī)?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的槪率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)隨機(jī)變量X的概率分布表如表,則P(|X-2|=1)=( 。
X1234
P$\frac{1}{6}$$\frac{1}{4}$m$\frac{1}{3}$
A.$\frac{7}{12}$B.$\frac{1}{2}$C.$\frac{5}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知全集U=R,集合A={x|(x-1)(x-4)≤0},則集合A的補(bǔ)集CUA=(-∞,1)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.給定六個(gè)數(shù)字:0,1,2,3,5,9.
(1)從中任選四個(gè)不同的數(shù)字,可以組成多少個(gè)不同的四位數(shù)?
(2)從中任選四個(gè)不同的數(shù)字,可以組成多少個(gè)不同的四位偶數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為$\frac{1}{2}$,過(guò)橢圓的左焦點(diǎn)F且傾斜角為60°的直線與圓x2+y2=$\frac{^{2}}{{a}^{2}}$相切
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓C交于不同的兩點(diǎn)M,N(M,N是左、右頂點(diǎn)),若以MN為直徑的圓恰好經(jīng)過(guò)橢圓C的右頂點(diǎn)A,判斷直線l是否過(guò)定點(diǎn),若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案