2.若$cos(α+\frac{π}{5})=\frac{4}{5}$,則$sin(2α+\frac{9π}{10})$=$\frac{7}{25}$.

分析 根據(jù)誘導(dǎo)公式以及二倍角公式化簡(jiǎn)計(jì)算即可.

解答 解:$cos(α+\frac{π}{5})=\frac{4}{5}$,則$sin(2α+\frac{9π}{10})$=cos(2α+$\frac{2π}{5}$)=2cos2(α+$\frac{π}{5}$)-1=2×$\frac{16}{25}$-1=$\frac{7}{25}$,
故答案為:$\frac{7}{25}$.

點(diǎn)評(píng) 本題考查了誘導(dǎo)公式以及二倍角公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,若a=$\sqrt{2}$,c=2,A=30°,則C等于( 。
A.30°B.30°或150°C.45°D.45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知a,b為正整數(shù)且a≤b,實(shí)數(shù)x、y滿足x+y=4($\sqrt{x+a}$$+\sqrt{y+b}$).若x+y的最大值為40,則滿足條件的數(shù)對(duì)(a,b)的數(shù)目為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=[2sin(x+$\frac{2π}{3}$)+sinx]cosx-$\sqrt{3}$sin2x.
(1)求f(x)圖象的對(duì)稱軸方程;
(2)若存在實(shí)數(shù)t∈[0,$\frac{5π}{12}$],使得sf(t)-2=0成立,求實(shí)數(shù)s的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|x2-x-2≤0,x∈R},B={x|-1<x<4,x∈Z},則A∩B=( 。
A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某校三年級(jí)在5月份進(jìn)行一次質(zhì)量考試,考生成績(jī)情況如圖所示某校高三年級(jí)在5月份進(jìn)行一次質(zhì)量考試,考生成績(jī)情況如表所示:
[0,400)[400,480)[480,550)[550,750)
文科考生6735196
理科考生53xyz
已知用分層抽樣方法在不低于550分的考生中隨機(jī)抽取5名考生進(jìn)行質(zhì)量分析,其中文科考生抽取了2名.
(1)已知該校不低于480分的文科理科考生人數(shù)之比為1:2,不低于400分的文科理科考生人數(shù)之比為2:5,求x、y的值.
(2)用分層抽樣的方法在不低于550分考生中隨機(jī)抽取5名考生,從這5名考生匯總抽取2名學(xué)生進(jìn)行調(diào)查,求至少有一名文科生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)i為虛數(shù)單位,(-3+4i)2=a+bi(a,b∈R),則下列判斷正確的是( 。
A.a+b=31B.a-b=-17C.ab=148D.|a+bi|=25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖所示的流程圖,輸入正實(shí)數(shù)x后,若輸出i=4,那么輸入的x的取值范圍是$\frac{9}{4}≤x<3$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知集合A={x||x|<2},B={-1,0,1,2,3},則集合A∩B中元素的個(gè)數(shù)為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案