精英家教網 > 高中數學 > 題目詳情

已知橢圓的四個頂點恰好是一邊長為2,一內角為的菱形的四個頂點.
(I)求橢圓的方程;
(II)直線與橢圓交于,兩點,且線段的垂直平分線經過點,求為原點)面積的最大值.

(I)  ; (II)  .

解析試題分析:(I)由圖形的對稱性及橢圓的幾何性質,易得 ,進而寫出方程; (II) ΔAOB的面積可以用 ,所以本題需要用弦長公式表示AB的長度,用點到之間的距離公式表示坐標原點O到直線的距離,而這些都需要有直線的方程作為前提條件。所以本題應先考慮設出直線AB的方程.此外,設方程的過程中,注意對于特殊情形的討論.
試題解析:
(I)因為橢圓的四個頂點恰好是一邊長為2,
一內角為的菱形的四個頂點,
所以,橢圓的方程為                                     4分
(II)設因為的垂直平分線通過點, 顯然直線有斜率,
當直線的斜率為時,則的垂直平分線為軸,則
所以
因為,
所以,當且僅當時,取得最大值為       7分
當直線的斜率不為時,則設的方程為
所以,代入得到
,            即                         
方程有兩個不同的解
,                                       8分
所以,
,化簡得到                     
代入,得到                                                    10分
又原點到直線的距離為

所以
化簡得到                                             12分        
因為,所以當時,即時,取得最大值
綜上,面積的最大值為
考點:直線與圓錐曲線的位置關系.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知橢圓:)上任意一點到兩焦點距離之和為,離心率為,左、右焦點分別為,點是右準線上任意一點,過作直 線的垂線交橢圓于點.

(1)求橢圓的標準方程;
(2)證明:直線與直線的斜率之積是定值;
(3)點的縱坐標為3,過作動直線與橢圓交于兩個不同點,在線段上取點,滿足,試證明點恒在一定直線上.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

動點與定點的距離和它到直線的距離之比是常數,記點的軌跡為曲線.
(I)求曲線的方程;
(II)設直線與曲線交于兩點,為坐標原點,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知橢圓C: 的左、右焦點分別為,離心率為,點A是橢圓上任一點,的周長為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點任作一動直線l交橢圓C于兩點,記,若在線段上取一點R,使得,則當直線l轉動時,點R在某一定直線上運動,求該定直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,
線段垂直平分線交于點,求點的軌跡的方程;
(Ⅲ)設軸交于點,不同的兩點上,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知△的兩個頂點的坐標分別是,且所在直線的斜率之積等于
(Ⅰ)求頂點的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(Ⅱ)當時,過點的直線交曲線兩點,設點關于軸的對稱
點為(不重合) 試問:直線軸的交點是否是定點?若是,求出定點,若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知、是橢圓的左、右焦點,且離心率,點為橢圓上的一個動點,的內切圓面積的最大值為.
(1) 求橢圓的方程;
(2) 若是橢圓上不重合的四個點,滿足向量共線,
線,且,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(13分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(﹣1,0),F2(1,0),且橢圓C經過點
(I)求橢圓C的離心率:
(II)設過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且,求點Q的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,拋物線

(I);
(II)

查看答案和解析>>

同步練習冊答案