分析 (1)證明AE⊥AD,PA⊥AE,推出AE⊥平面PAD,然后證明AE⊥PD;
(2)連結(jié)AF,說明∠AFE為EF與平面PAD所成的角,利用tan∠AFE=$\frac{AE}{AF}$,求解即可.
解答 (1)證明:∵四邊形ABCD為菱形,且∠ABC=60°,
∴△ABC為正三角形,又E為BC中點(diǎn),
∴AE⊥BC;又AD∥BC,
∴AE⊥AD,…(3分)
∵PA⊥平面ABCD,又AE?平面ABCD,
∴PA⊥AE,
∴AE⊥平面PAD,又PD?平面PAD,
∴AE⊥PD;…(6分)
(2)連結(jié)AF,由(1)知AE⊥平面PAD,
∴∠AFE為EF與平面PAD所成的角,且AF⊥PD…(8分)
依題意,AF=$\sqrt{2}$,AE=$\sqrt{3}$,
∴tan∠AFE=$\frac{AE}{AF}$=$\frac{\sqrt{6}}{2}$,
∴EF與平面PAD所成角的正切值為$\frac{\sqrt{6}}{2}$…(12分)
點(diǎn)評 本題考查直線與平面垂直的判定定理的應(yīng)用,直線與平面所成角的求法,考查空間想象能力以及計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -5 | B. | 11 | C. | 15 | D. | 19 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
月份x | 1 | 2 | 3 | 4 |
用水量y | 4.5 | 4 | 3 | 2.5 |
A. | 10.5 | B. | 5.15 | C. | 5.2 | D. | 5.25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 正三角形 | B. | 直角三角形 | C. | 等腰銳角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com