已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線為y=
3
x,右焦點(diǎn)F到x=
a2
c
的距離為
3
2
,求雙曲線的方程.
考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程
專(zhuān)題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)雙曲線
x2
a2
-
y2
b2
=1的一條漸近線為y=
3
x,右焦點(diǎn)F到x=
a2
c
的距離為
3
2
,可得
b
a
=
3
c-
a2
c
=
3
2
c2=a2+b2
,求出a,b,即可求雙曲線的方程.
解答: 解:由題意,
b
a
=
3
c-
a2
c
=
3
2
c2=a2+b2
,
∴a=2,c=4,b=2
3
,
∴雙曲線的方程為
x2
4
-
y2
12
=1
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程的求法,考查雙曲線的性質(zhì),正確計(jì)算是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在不等式組
y≤x
0<x≤3
y>
1
x
,所表示的平面區(qū)域內(nèi)所有的整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn)對(duì)稱(chēng)為整點(diǎn))中任取3個(gè)點(diǎn),則這3個(gè)點(diǎn)恰能成為一個(gè)三角形的三個(gè)頂點(diǎn)的概率為( 。
A、
1
5
B、
4
5
C、
1
10
D、
9
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某個(gè)體服裝店經(jīng)營(yíng)某種服裝,一周內(nèi)獲純利潤(rùn)y(元)與該周每天銷(xiāo)售這種服裝的件數(shù)x之間的一組數(shù)據(jù)如下:
x3456789
y66697381899091
已知
7
i=1
x
2
i
=280
,
7
i=1
y
2
i
=45309,
7
i=1
xiyi
=3487,此時(shí)r0.05=0.754
(1)求
.
x
.
y
;
(2)判斷一周內(nèi)獲純利潤(rùn)y與該周每天銷(xiāo)售件數(shù)x之間是否線性相關(guān),如果線性相關(guān),求出線性回歸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方形ABCD中,E,F(xiàn)分別是AB,BC的中點(diǎn),現(xiàn)在沿DE,DF及EF把△ADE,△CDF和△BEF折起,使A,B,C三點(diǎn)重合,重合后的點(diǎn)記作P,那么在四面體P-DEF中必有( 。
A、DP⊥平面PEF
B、DM⊥平面PEF
C、PM⊥平面DEF
D、PF⊥平面DEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程ax2-x-1=0在區(qū)間(0,1)內(nèi)恰有一個(gè)解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,∠A=60°,a=5,c=8,求∠C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a b c∈R+,a+
2
b+
3
c=2
3
,記a2+b2+c2的最小值為m.
(Ⅰ)求實(shí)數(shù)rn;
(Ⅱ)若關(guān)于x的不等式|x-3|≥m和x2+px+q≥0的解集相同,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ax3+bx2+cx+d(a≠0).已知五個(gè)方程的相異實(shí)根個(gè)數(shù)如下表所述﹕
f(x)-20=01f(x)+10=01
f(x)-10=03f(x)+20=01
f(x)=03
α為關(guān)于f(x)的極大值﹐下列選項(xiàng)中正確的是( 。
A、0<α<10
B、10<α<20
C、-10<α<0
D、-20<α<-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在實(shí)數(shù)集R上的函數(shù)f(x),對(duì)任意x,y∈R,有f(x-y)+f(x+y)=2f(x)f(y),且f(0)≠0.
求證:f(x)是偶函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案