11.函數(shù)y=($\frac{1}{2}$)${\;}^{{x}^{2}+2x}$的值域為(0,2].

分析 x2+2x=(x+1)2-1≥-1.再利用指數(shù)函數(shù)的單調(diào)性與值域即可得出.

解答 解:∵x2+2x=(x+1)2-1≥-1.
∴y=($\frac{1}{2}$)${\;}^{{x}^{2}+2x}$∈(0,2].
∴函數(shù)y的值域為(0,2].
故答案為:(0,2].

點評 本題考查了二次函數(shù)與指數(shù)函數(shù)的單調(diào)性值域、不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.圓C:x2+y2-6x+8y+24=0關(guān)于直線 l:x-3y-5=0對稱的圓的方程是( 。
A.(x+1)2+(y+2)2=1B.(x-1)2+(y-2)2=1C.(x-1)2+(y+2)2=1D.(x+1)2+(y-2)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖在正方體AC1中,直線BC1與平面A1BD所成的角的余弦值是( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.從點(1,0)射出的光線經(jīng)過直線y=x+1反射后的反射光線射到點(3,0)上,則該束光線經(jīng)過的最短路程是(  )
A.$2\sqrt{5}$B.$\sqrt{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,以O(shè)為圓心的兩個同心圓中,大圓半徑為13cm,小圓半徑為5cm,且大圓的弦AB切小圓于P,則AB=24cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費用y有如下的統(tǒng)計資料 若由資料知y對x呈線性相關(guān)關(guān)系,
使用年限x23456
維修費用y2.23.85.56.57.0
參考公式:$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({x}_{i}^{2}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{a=\overline{y}-b\overline{x}}\end{array}\right.$
試求:
(1)線性回歸方程.
(2)估計使用年限為10年時,維修費用大約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$sin\frac{α}{2}=\frac{1}{3}$,則cosα=$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{-{2}^{x}+a}{{2}^{x+1}+b}$(a>0,b>0)為奇函數(shù).
(1)求a與b的值;
(2)判斷并用定義證明函數(shù)f(x)的單調(diào)性,再求不等式f(x)>-$\frac{1}{6}$的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|1≤x2<9},B={x|2x-4≥x-2},
(1)求A∩B;
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案