18.若-1<x<1,-1<y<1,求證:$(\frac{x-y}{1-xy})^{2}$<1.

分析 通過(guò)題意,利用分析法可知要證$(\frac{x-y}{1-xy})^{2}$<1,即證|x-y|<|1-xy|,兩邊平方后即證(1-x2)(1-y2)>0,進(jìn)而可得結(jié)論.

解答 證明:∵-1<x<1,-1<y<1,
∴|1-xy|>0,|x-y|≥0,
要證$(\frac{x-y}{1-xy})^{2}$<1,只要證|$\frac{x-y}{1-xy}$|<1,即證|x-y|<|1-xy|,
只要證(x-y)2<(1-xy)2,即證(1-x2)(1-y2)>0,
而由|x|<1,|y|<1可得(1-x2)(1-y2)>0成立,
故原不等式成立.

點(diǎn)評(píng) 本題考查不等式的證明,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.過(guò)M(1,2$\sqrt{2}$)作直線與拋物線y2=8x,有且只有一個(gè)公共點(diǎn),這樣的直線有( 。l.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為π,當(dāng)x=$\frac{π}{12}$時(shí),f(x)取得最大值.
(1)求f(x)的解析式;
(2)求出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.等比數(shù)列{an}中各項(xiàng)均為正數(shù)a1a5=4,a4=1,則{an}的公比q為( 。
A.2B.$\frac{1}{2}$C.±$\frac{1}{2}$D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.己知等差數(shù)列{an}中,a2=2,a5=5.
(Ⅰ)若bn=2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)的和Sn
 (Ⅱ)若c1=a1,cn-cn-1=an,求數(shù)列{cn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知三棱錐P-ABC的四個(gè)頂點(diǎn)在半徑為2的球面上,且PA⊥平面ABC,若AB=2,AC=$\sqrt{3}$∠BAC=$\frac{π}{2}$,則三棱錐P-ABC的體積是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知等差數(shù)列{an}的首項(xiàng)為1,前n項(xiàng)和為Sn,且S1,S3,S9成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記Tn為數(shù)列{$\frac{1}{{a}_{n+1}{a}_{n}}$}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖所示,過(guò)點(diǎn)(1,0)的直線與拋物線y2=x交于A、B兩點(diǎn),射線OA和OB分別和圓(x-2)2+y2=4交于D、E兩點(diǎn),若$\frac{{S}_{△OAB}}{{S}_{△ODE}}$=λ,則λ的最小值是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,拋物線C:x2=2py(p>0)的焦點(diǎn)為F(0,1),取垂直于y軸的直線與拋物線交于不同的兩點(diǎn)P1,P2.過(guò)P1,P2作圓心為Q的圓,使拋物線的其余點(diǎn)均在圓外,且P1Q⊥P2Q.
(1)求拋物線C和圓Q的方程;
(2)過(guò)點(diǎn)F作直線,與拋物線C和圓Q依次交于M,A,B,N,求|MN|•|AB|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案