6.在極坐標(biāo)系中,已知點(diǎn)A的極坐標(biāo)為$({2\sqrt{2},-\frac{π}{4}})$,圓E的極坐標(biāo)方程為ρ=4cosθ+4sinθ,試判斷點(diǎn)A與圓E的位置關(guān)系.

分析 先根據(jù)ρcosθ=x,ρsinθ=y,ρ2=x2+y2將點(diǎn)A的極坐標(biāo)化為直角坐標(biāo)為(2,-2),圓E的極坐標(biāo)方程化為直角坐標(biāo)方程為(x-2)2+(y-2)2=8,再根據(jù)點(diǎn)A到圓心距離d與半徑比較,即可得出點(diǎn)A與圓E的位置關(guān)系.

解答 解:點(diǎn)A的極坐標(biāo)為$({2\sqrt{2},-\frac{π}{4}})$化為:點(diǎn)A的直角坐標(biāo)為(2,-2),
圓E的直角坐標(biāo)方程為(x-2)2+(y-2)2=8,
則點(diǎn)A到圓心E的距離$d=\sqrt{{{(2-2)}^2}+{{(-2-2)}^2}}=4>r=2\sqrt{2}$,
所以點(diǎn)A在圓E外.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程與直角坐標(biāo)方程的互化、兩點(diǎn)之間距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角是60°,|$\overrightarrow{a}$|=|$\overrightarrow$|=1,|x$\overrightarrow{a}$+y$\overrightarrow$|=$\sqrt{3}$(x,y∈R),則|x$\overrightarrow{a}$-y$\overrightarrow$|的最大值是( 。
A.1B.$\sqrt{3}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.橢圓$\frac{x^2}{6}+\frac{y^2}{9}=1$的焦點(diǎn)坐標(biāo)為(0,$\sqrt{3}$),(0,-$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四邊形ABCD中,△ABC是邊長為2的等邊三角形,AD丄DC,AD=DC,E、F是平面ABCD同一側(cè)的兩點(diǎn),BE丄平面ABCD,DF丄平面ABCD,且DF=1.
(I)若AE丄CF,求BE的值;  
(Ⅱ)求當(dāng)BE為何值時(shí),二面角E-AC-F的大小是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.貴陽市某中學(xué)高三(2)班排球隊(duì)和籃球隊(duì)各有10名同學(xué),現(xiàn)測得排球隊(duì)10人的身高(單位:cm)分別是:162,170,171,182,163,158,179,168,183,168,籃球隊(duì)10人的身高(單位:cm)分別是:170,159,162,173,181,165,176,168,178,179.
(1)請(qǐng)把兩隊(duì)身高數(shù)據(jù)記錄在圖中所示的莖葉圖中,并求出兩個(gè)隊(duì)的身高的平均數(shù);
(2)現(xiàn)從兩隊(duì)所在身高超過178cm的同學(xué)中隨機(jī)抽取三明同學(xué),則恰好兩人來自排球隊(duì)一人來自籃球隊(duì)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=2+sin3x的最大值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a1=3,a2=6,且an+2=an+1-an,則a2016=( 。
A.3B.-3C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知平面向量$\overrightarrow a,\overrightarrow b$滿足$|\overrightarrow a|=1,\overrightarrow{|b}|=2$,$\overrightarrow a與\overrightarrow b$的夾角為60°,則“m=1”是“$(\overrightarrow a-m\overrightarrow b)⊥\overrightarrow a$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知某企業(yè)工作人員的配置以及比例如圖所示,為了調(diào)查各類工作人員的薪資狀況,現(xiàn)利用分層抽樣的方法抽取部分工作人員進(jìn)行薪資調(diào)查,若抽取的管理人員有8人,則抽取的技師人數(shù)為( 。
A.40B.20C.12D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案