【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)將曲線上各點(diǎn)的縱坐標(biāo)伸長(zhǎng)為原來(lái)的倍(橫坐標(biāo)不變)得到曲線,求的參數(shù)方程;
(2)若,分別是直線與曲線上的動(dòng)點(diǎn),求的最小值.
【答案】(1)(為參數(shù));(2).
【解析】
(1)將曲線上各點(diǎn)的縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(橫坐標(biāo)不變)得到,變形后可得的參數(shù)方程;
(2)由,展開(kāi)兩角和的正弦,結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得直線l的直角坐標(biāo)方程,然后利用點(diǎn)到直線的距離公式及三角函數(shù)求最值得答案.
解析:(1)曲線上各點(diǎn)的縱坐標(biāo)伸長(zhǎng)為原來(lái)的倍(橫坐標(biāo)不變)得到曲線,
(為參數(shù)),即(為參數(shù)).
(2)直線,,
直線的直角坐標(biāo)方程為,
,
當(dāng)時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn),且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,且).
(1)求函數(shù)的極值點(diǎn);
(2)當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三個(gè)班共有名學(xué)生,為調(diào)查他們的上網(wǎng)情況,通過(guò)分層抽樣獲得了部分學(xué)生一周的上網(wǎng)時(shí)長(zhǎng),數(shù)據(jù)如下表(單位:小時(shí)):
班 | |
班 | |
班 |
(1)試估計(jì)班的學(xué)生人數(shù);
(2)從這120名學(xué)生中任選1名學(xué)生,估計(jì)這名學(xué)生一周上網(wǎng)時(shí)長(zhǎng)超過(guò)15小時(shí)的概率;
(3)從A班抽出的6名學(xué)生中隨機(jī)選取2人,從B班抽出的7名學(xué)生中隨機(jī)選取1人,求這3人中恰有2人一周上網(wǎng)時(shí)長(zhǎng)超過(guò)15小時(shí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,若橢圓經(jīng)過(guò)點(diǎn),且△PF1F2的面積為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)斜率為1的直線與以原點(diǎn)為圓心,半徑為的圓交于A,B兩點(diǎn),與橢圓C交于C,D兩點(diǎn),且(),當(dāng)取得最小值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,已知棱,,兩兩垂直,長(zhǎng)度分別為1,2,2.若(),且向量與夾角的余弦值為.
(1)求的值;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列的公差,數(shù)列的前項(xiàng)和為,滿足,且,.若實(shí)數(shù),則稱具有性質(zhì).
(1)請(qǐng)判斷、是否具有性質(zhì),并說(shuō)明理由;
(2)設(shè)為數(shù)列的前項(xiàng)和,,且恒成立.求證:對(duì)任意的,實(shí)數(shù)都不具有性質(zhì);
(3)設(shè)是數(shù)列的前項(xiàng)和,若對(duì)任意的,都具有性質(zhì),求所有滿足條件的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為A,過(guò)的直線與y軸交于點(diǎn)M,滿足(O為坐標(biāo)原點(diǎn)),且直線l與直線之間的距離為.
(1)求橢圓C的方程;
(2)在直線上是否存在點(diǎn)P,滿足?存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)橢圓的四個(gè)頂點(diǎn)與坐標(biāo)軸垂直的四條直線圍成的矩形(是第一象限內(nèi)的點(diǎn))的面積為,且過(guò)橢圓的右焦點(diǎn)的傾斜角為的直線過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)若射線與橢圓的交點(diǎn)分別為.當(dāng)它們的斜率之積為時(shí),試問(wèn)的面積是否為定值?若為定值,求出此定值;若不為定值,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com