【題目】某企業(yè)為節(jié)能減排,用9萬(wàn)元購(gòu)進(jìn)一臺(tái)新設(shè)備用于生產(chǎn),第一年需運(yùn)營(yíng)費(fèi)用2萬(wàn)元,從第二年起,每年運(yùn)營(yíng)費(fèi)用均比上一年增加3萬(wàn)元,該設(shè)備每年生產(chǎn)的收入均為21萬(wàn)元,設(shè)該設(shè)備使用了n(n∈N*)年后,盈利總額達(dá)到最大值(盈利額等于收入減去成本),則n等于(
A.6
B.7
C.8
D.7或8

【答案】B
【解析】解:設(shè)該設(shè)備第n年的營(yíng)運(yùn)費(fèi)為an萬(wàn)元,則數(shù)列{an}是以2為首項(xiàng),3為公差的等差數(shù)列,則an=3n﹣1,
則該設(shè)備使用了n年的營(yíng)運(yùn)費(fèi)用總和為Tn= = n2+ n,
設(shè)第n年的盈利總額為Sn , 則Sn=21n﹣( n2+ n)﹣9=﹣ n2+ n﹣9,
∴由二次函數(shù)的性質(zhì)可知:n= 時(shí),Sn取得最大值,
∵n∈N*,故當(dāng)n=7時(shí),Sn取得最大值,
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)上稱函數(shù)y=kx+b(k,b∈R,k≠0)為線性函數(shù).對(duì)于非線性可導(dǎo)函數(shù)f(x),在點(diǎn)x0附近一點(diǎn)x的函數(shù)值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f'(x0)(x﹣x0).利用這一方法, 的近似代替值(
A.大于m
B.小于m
C.等于m
D.與m的大小關(guān)系無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,A,B,C角所對(duì)的邊分別為a,b,c,且 = sinC.
(1)求∠C;
(2)若 =2,求△ABC面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x﹣1)ex ax2(a∈R).
(1)當(dāng)a≤1時(shí),求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈(0,+∞)時(shí),y=f′(x)的圖象恒在y=ax3+x﹣(a﹣1)x的圖象上方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和Sn=3n2+2n+1.
(1)求{an}的通項(xiàng)公式;
(2)令bn=an2n , 求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥側(cè)面A1ABB1 , 且AA1=AB=2.

(1)求證:AB⊥BC;
(2)若直線AC與平面A1BC所成的角為 ,求銳二面角A﹣A1C﹣B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx+x在區(qū)間[2,3]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(
A.[﹣2,+∞)
B.[﹣3,+∞)
C.[0,+∞)
D.(﹣∞,﹣2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第十三屆全運(yùn)會(huì)將在2017年8月在天津舉行,組委會(huì)在2017年1月對(duì)參加接待服務(wù)的10名賓館經(jīng)理進(jìn)行為期半月的培訓(xùn),培訓(xùn)結(jié)束,組織了一次培訓(xùn)結(jié)業(yè)測(cè)試,10人考試成績(jī)?nèi)缦拢M分為100分):
75 84 65 90 88 95 78 85 98 82
(1)以成績(jī)的十位為莖個(gè)位為葉作出本次結(jié)業(yè)成績(jī)的莖葉圖,并計(jì)算平均成績(jī)與成績(jī)中位數(shù) ;
(2)從本次結(jié)業(yè)成績(jī)?cè)?0分以上的人員中選3人,這3人中成績(jī)?cè)?0分(含90分)以上的人數(shù)為 ,求 的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)進(jìn)行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)物每滿500元,可選擇返回50元現(xiàn)金或參加一次抽獎(jiǎng),抽獎(jiǎng)規(guī)則如下:從1個(gè)裝有6個(gè)白球、4個(gè)紅球的箱子中任摸一球,摸到紅球就可獲得100元現(xiàn)金獎(jiǎng)勵(lì),假設(shè)顧客抽獎(jiǎng)的結(jié)果相互獨(dú)立.
(Ⅰ)若顧客選擇參加一次抽獎(jiǎng),求他獲得100元現(xiàn)金獎(jiǎng)勵(lì)的概率;
(Ⅱ)某顧客已購(gòu)物1500元,作為商場(chǎng)經(jīng)理,是希望顧客直接選擇返回150元現(xiàn)金,還是選擇參加3次抽獎(jiǎng)?說(shuō)明理由;
(Ⅲ)若顧客參加10次抽獎(jiǎng),則最有可能獲得多少現(xiàn)金獎(jiǎng)勵(lì)?

查看答案和解析>>

同步練習(xí)冊(cè)答案