【題目】某位同學(xué)進(jìn)行社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了12月11日至12月15日的白天平均氣溫 (℃)與該小賣部的這種飲料銷量(杯),得到如下數(shù)據(jù):
日期 | 12月11日 | 12月12日 | 12月13日 | 12月14日 | 12月15日 |
平均氣溫(℃) | 9 | 10 | 12 | 11 | 8 |
銷量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)據(jù)(1)中所得的線性回歸方程,若天氣預(yù)報12月16日的白天平均氣溫7(℃),請預(yù)測該奶茶店這種飲料的銷量. (參考公式:,)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量a=(-2,1),b=(x,y).
(1)若x,y分別表示將一枚質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時第一次、第二次出現(xiàn)的點數(shù),求滿足a·b=-1的概率;
(2)若x,y在連續(xù)區(qū)間[1,6]上取值,求滿足a·b<0的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與軸相切,且切點在軸的正半軸上.
(1)若函數(shù)在上的極小值不大于,求的取值范圍;
(2)設(shè),證明: 在上的最小值為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 為實常數(shù).
(1)討論函數(shù)的極值;
(2)當(dāng)是函數(shù)的極值點時,令,設(shè),比較與的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其圖象在點處切線的斜率為-3.
(1)求與關(guān)系式;
(2)求函數(shù)的單調(diào)區(qū)間(用只含有的式子表示);
(3)當(dāng)時,令,設(shè)是函數(shù)的兩個零點, 是與的等差中項,求證: (為函數(shù)的導(dǎo)函數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.
(1)求橢圓的方程;
(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設(shè)利用的舊墻的長度為x(單位:元)。
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元2222年,有一種高危傳染病在全球范圍內(nèi)蔓延,被感染者的潛伏期可以長達(dá)10年,期間會有約0.05%的概率傳染給他人,一旦發(fā)病三天內(nèi)即死亡,某城市總?cè)丝诩s200萬人,專家分析其中約有1000名傳染者,為了防止疾病繼續(xù)擴散,疾病預(yù)防控制中心現(xiàn)決定對全市人口進(jìn)行血液檢測以篩選出被感染者,由于檢測試劑十分昂貴且數(shù)量有限,需要將血樣混合后一起檢測以節(jié)約試劑,已知感染者的檢測結(jié)果為陽性,末被感染者為陰性,另外檢測結(jié)果為陽性的血樣與檢測結(jié)果為陰性的血樣混合后檢測結(jié)果為陽性,同一檢測結(jié)果的血樣混合后結(jié)果不發(fā)生改變.
(1)若對全市人口進(jìn)行平均分組,同一分組的血樣將被混合到一起檢測,若發(fā)現(xiàn)結(jié)果為陽性, 則再在該分組內(nèi)逐個檢測排査,設(shè)每個組個人,那么最壞情況下,需要進(jìn)行多少次檢測可以找到所有的被感染者?在當(dāng)前方案下,若要使檢測的次數(shù)盡可能少,每個分組的最優(yōu)人數(shù)?
(2)在(1)的檢測方案中,對于檢測結(jié)果為陽性的組來取逐一檢測排査的方法并不是很好, 或可將這些組的血樣再進(jìn)行一次分組混合血樣檢測,然后再進(jìn)行逐一排査,仍然考慮最壞的情況,請問兩次要如何分組,使檢測總次數(shù)盡可能少?
(3)在(2)的檢測方案中,進(jìn)行了兩次分組混合血樣檢測,仍然考慮最壞情況,若再進(jìn)行若干次分組混合血樣檢測,是否會使檢測次數(shù)更少?請給出最優(yōu)的檢測方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com