如圖所示,已知直四棱柱中,,,且滿足

(I)求證:平面;
(Ⅱ)求二面角的余弦值。
(I)見解析;(Ⅱ)
(I)設(shè)的中點,連結(jié),

則四邊形為方形,,故,


平面
(Ⅱ)由(I)知平面,
平面,,
的中點,連結(jié)
,取的中點,連結(jié)
為二面角的平面角
連結(jié),在中,
的中點,連結(jié),,在中,

二面角的余弦值為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四棱錐P—ABCD的底面是矩形,PA⊥平面ABCD,E、F分別是AB、PD的中點,又二面角P—CD—B為45°.
(1)求證:AF∥平面PEC;
(2)求證:平面PEC⊥平面PCD;
(3)設(shè)AD=2,CD=2,求點A到平面PEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面平面,,是夾在兩平行平面間的兩條線段,內(nèi),,內(nèi),點,分別在,上,且.求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖, 在直三棱柱ABCA1B1C1中,AC=3,BC=4,AA1=4,點DAB的中點, (I)求證:(I)ACBC1; 
(II)求證:AC 1//平面CDB1;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)在五棱錐中,PA=AB=AE=2,PB=PE=, BC=DE=,.(Ⅰ)求證:PA平面(Ⅱ)求二面角 的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐PABCD中,側(cè)棱PA⊥底面ABCD,底面ABCD是矩形,問底面的邊BC上是否存在點E.
(1)使∠PED=90°;
(2)使∠PED為銳角. 證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方體的棱長為1,過點A作平面的垂線,垂足為點
有下列四個命題
A.點的垂心
B.垂直平面
C.二面角的正切值為
D.點到平面的距離為
其中真命題的代號是                        .(寫出所有真命題的代號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

連結(jié)球面上兩點的線段稱為球的弦.半徑為4的球的兩條弦的長度分別等于、,每條弦的兩端都在球面上運動,則兩弦中點之間距離的最大值為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知空間四邊形的兩條對角線的長,所成的角為,,,分別是,,的中點,求四邊形的面積

查看答案和解析>>

同步練習(xí)冊答案