【題目】如圖,在三棱柱中,平面,,.
(Ⅰ)求證:平面;
(Ⅱ)求異面直線與所成角的大;
(Ⅲ)點在線段上,且,點在線段上,若平面,求的值.
【答案】(Ⅰ)詳見解析;(Ⅱ)60°;(Ⅲ).
【解析】
(Ⅰ)推導出,,,從而平面,進而,由此能證明平面;
(Ⅱ)以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出異面直線與所成角的大小為;
(Ⅲ)求出平面的法向量,由平面,利用向量法能求出的值.
解:(Ⅰ)證明:在三棱柱中,
平面,,.
,,,
,平面,
平面,,
,平面.
(Ⅱ)以為原點,為軸,為軸,為軸,建立空間直角坐標系,
,0,,,0,,,2,,,0,,
,0,,,,,
設異面直線與所成角為,
則,.
異面直線與所成角的大小為.
(Ⅲ)解:,2,,,0,,,0,,
,0,,,0,,,2,,
,2,,,0,,
設平面的法向量,,,
則,取,得,1,,
點在線段上,且,點在線段上,
設,,,,,,,
則,,,
即,0,,,,,,,,,
解得,0,,,,,,,,
平面,,
解得:.
∴的值為.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,圓的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求圓的普通方程和直線的直角坐標方程;
(2)若直線與圓交于兩點,是圓上不同于兩點的動點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a為實數(shù),函數(shù)f(x)=ex﹣2x+2a,x∈R.
(1)求f(x)的單調(diào)區(qū)間及極值;
(2)求證:當a>ln2﹣1且x>0時,ex>x2﹣2ax+1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列,中,已知,,且,,成等差數(shù)列,,,也成等差數(shù)列.
求證:是等比數(shù)列;
設m是不超過100的正整數(shù),求使成立的所有數(shù)對.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
(1)求橢圓的標準方程和離心率;
(2)是否存在過點的直線與橢圓相交于,兩點,且滿足.若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)將某校高二年級某班的學業(yè)水平測試數(shù)學成績分為、、、、五組,繪制而成的莖葉圖、頻率分布直方圖如下,由于工作疏忽,莖葉圖有部分被損壞,頻率分布直方圖也不完整,請據(jù)此解答如下問題:(注:該班同學數(shù)學成績均在區(qū)間內(nèi))
(1)將頻率分布直方圖補充完整.
(2)該班希望組建兩個數(shù)學學習互助小組,班上數(shù)學成績最好的兩位同學分別擔任兩組組長,將此次成績低于60分的同學作為組員平均分到兩組,即每組有一名組長和兩名成績低60分的組員,求此次考試成績?yōu)?/span>52分、54分和98分的三名同學分到同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義平面向量的一種運算:(是向量和的夾角),則下列命題:
①;②;③若且,則;其中真命題的序號是___________________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市有一面積為12000平方米的三角形地塊,其中邊長為200米,現(xiàn)計劃建一個如圖所示的長方形停車場,停車場的四個頂點都在的三條邊上,其余的地面全部綠化.若建停車場的費用為180元/平方米,綠化的費用為60元/平方米,設米,建設工程的總費用為元.
(1)求關于的函數(shù)表達式:
(2)求停車場面積最大時的值,并求此時的工程總費用.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的首項為1.記.
(1)若為常數(shù)列,求的值:
(2)若為公比為2的等比數(shù)列,求的解析式:
(3)是否存在等差數(shù)列,使得對一切都成立?若存在,求出數(shù)列的通項公式:若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com